Skip to main content

Advertisement

Log in

Microwave assisted synthesis and characterization of pure and Cr doped TiO2 with improved photo-efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work deals with the effect of chromium (Cr) dopant on structural, optical and photocatalytic properties of TiO2 nanoparticles by a novel microwave irradiation method. The concentration of Cr is varied from 0 to 5 wt%. X-ray diffraction results suggest that both pure and Cr doped TiO2 had tetragonal anatase type structure with single crystalline nature. Transmission electron microscope measurement showed that well crystalline spherical morphology and the average particles size was found to be about 25–45 nm. The absorption edges of TiO2 shift towards longer wavelengths (i.e. red shifted) from 366 to about 459 nm with increasing Cr concentration, which greatly improve the UV absorption of TiO2 nano-materials. The photocatalytic activity of the catalyst powders evaluated by using three types of dyes such as azo-Methyl Red, Congo Red, Orange G under UV light irradiation. The result showed that the photocatalytic property was significantly improved by Cr doping. The superior photocatalytic mechanism by Cr doping was also discussed in detail. The samples were further characterized by photoluminescence and energy dispersive spectra analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Gratzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  2. J. Wijnhoven, W.L. Vos, Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998)

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  4. A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)

    Article  Google Scholar 

  5. D.A. Tryk, A. Fujishima, K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim. Acta 45, 2363–2376 (2000)

    Article  Google Scholar 

  6. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  7. Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001)

    Article  Google Scholar 

  8. A. Hagfeldt, M. Grätzel, M. Photovoltaics, Acc. Chem. Res. 33, 269–277 (2000)

    Article  Google Scholar 

  9. A.O.T. Patrocínio, E.B. Paniago, R.M. Paniago, N.Y. Murakami Iha, XPS characterization of sensitized n-TiO2 thin films for dye-sensitized solar cell applications. Appl. Surf. Sci. 254, 1874–1879 (2008)

    Article  Google Scholar 

  10. I.A. Al-Homoudi, J.S. Thakur, R. Naik, G.W. Auner, G. Newaz, Anatase TiO2 films based CO gas sensor: film thickness, substrate and temperature effects. Appl. Surf. Sci. 253, 8607–8614 (2007)

    Article  Google Scholar 

  11. X.Z. Li, H. Liu, L.F. Cheng, H.J. Tong, Photocatalytic oxidation using a new catalyst TiO2 microsphere for water and wastewater treatment. Environ. Sci. Technol. 37, 3989–3994 (2003)

    Article  Google Scholar 

  12. R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, A. Boudrioua, TiO2 thin films prepared by sol-gel method for waveguiding applications: correlation between the structural and optical properties. Opt. Mater. 30, 645–651 (2007)

    Article  Google Scholar 

  13. S.-H. Jeong, J.-K. Kim, B.-S. Kim, S.-H. Shim, B.-T. Lee, Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating. Vacuum 76, 507–515 (2004)

    Article  Google Scholar 

  14. W. Yang, C.A. Wolden, Plasma-enhanced chemical vapor deposition of TiO2 thin films for dielectric applications. Thin Solid Films 515, 1708–1713 (2006)

    Article  Google Scholar 

  15. X.X. Fan, X.Y. Chen, S.P. Zhu, The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. J. Mol. Catal. A 284, 155–160 (2008)

    Article  Google Scholar 

  16. S. Zhang, Y. Chen, Y. Yu, H. Wu, S. Wang, B. Zhu et al., Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J. Nanoparticle Res. 10, 871–875 (2008)

    Article  Google Scholar 

  17. S. Buddee, S. Wongnawa, U. Sirimahachai, W. Puetpaibool, Recyclable UV and visible light photocatalytically active amorphous TiO2 doped with M (III) ions (M = Cr and Fe). Mater. Chem. Phys. 126, 167–177 (2011)

    Article  Google Scholar 

  18. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci.: Mater. Electron. 25, 730–735 (2014)

    Google Scholar 

  19. R. Senthil Kumar, B. Gnanavel, High performance catalytic activity of pure and silver (Ag) doped TiO2 nanoparticles by a novel microwave irradiation technique. J. Mater. Sci.: Mater. Electron. 28, 4253–4259 (2017)

    Google Scholar 

  20. J.F. Zhu, Z.G. Deng, F. Chen, et al., Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl. Catal. B 62, 329–335 (2006)

    Article  Google Scholar 

  21. T.H. Jun, K.S. Lee, Cr-doped TiO2 thin films deposited by RF-sputtering. Mater. Lett. 64, 2287–2289 (2010)

    Article  Google Scholar 

  22. M. Parthibavarman, V. Hariharan, C. Sekar, V.N. Singh, Effect of copper on structural, optical and electrochemical properties of SnO2 nanoparticles. J. Optoelectron. Adv. Mater. 12, 1894–1898 (2010)

    Google Scholar 

  23. D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, Influence of Zn doping on structural, optical and photocatalytic activity of WO3 nanoparticles by a novel microwave irradiation technique. J. Mater. Sci.: Mater. Electron. 26, 6823–6830 (2016)

    Google Scholar 

  24. Y.-H. Peng, G.-F. Huang, W.Q. Huang, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv. Powder Technol. 23, 8–12 (2012)

    Article  Google Scholar 

  25. Y. Liu, R.O. Claus, Blue light emitting nanosized TiO2 colloids. J. Am. Chem. Soc. 119, 5273–5274 (1997)

    Article  Google Scholar 

  26. D. Li, H. Haned, N.K. Labhsetwar, S. Hishit, N. Ohashi, Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 401, 579–584 (2005)

    Article  Google Scholar 

  27. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Mater. Chem. Phys. 116, 376–382 (2009)

    Article  Google Scholar 

  28. M.A. Behnajady, N. Modirshahla, M. Shokri, A. Zeininezhad, H.A. Zamani, Enhancement photocatalytic activity of ZnO nanoparticles by silver doping with optimization of photodeposition method parameters. J. Environ. Sci. Health A 44, 666–672 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil Kumar, R., Gnanavel, B. & Jegatheesan, A. Microwave assisted synthesis and characterization of pure and Cr doped TiO2 with improved photo-efficiency. J Mater Sci: Mater Electron 29, 6501–6510 (2018). https://doi.org/10.1007/s10854-018-8632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8632-0

Navigation