Skip to main content
Log in

The cooling rate effect on structure and flux pinning force of FeTeSe single crystal deposited by self-flux method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis and characterization of FeTe0.5Se0.5 single crystals prepared by self-flux technique with two different cooling rates of 1.45 and 5.83 ℃/h have been investigated. The XRD results show that the samples have tetragonal structure. The SEM results indicate that the samples demonstrate a terrace-like formation. The superconducting transition temperatures of two samples obtained as magnetization measurement are seen to be 14.62 and 14.38 K for sample A (5.83 ℃/h) and sample B (1.45 ℃/h), respectively. The MH curves reveal the existence of ferromagnetism in all measured temperatures. The normalized pinning force f(Fp/Fpmax) at h(H/H irr ) curves are scaled using the Dew-Hughes model given by f(h) = Ahp(1 − h)q with A = 2.73, p = 0.81 and q = 0.69, the ratio [p/p + q] ≈ 0.54 for cooling rate of 5.83 ℃/h sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La [O1-xFx] FeAs (x = 0.05 – 0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008). https://doi.org/10.1021/ja800073m

    Article  Google Scholar 

  2. Z.A. Ren, W. Lu, J. Yang, W. Yi, X.L. Shen, Z.C. Li, C.G. Che, X.L. Dong, L.L. Sun, F. Zhou, Z.X. Zhao, Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs. Chin. Phys. Lett. 25, 2215 (2008)

    Article  Google Scholar 

  3. F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.C. Chu, D.C. Yan, M.K. Wu, Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. 105(38), 14262–14264 (2008). https://doi.org/10.1073/pnas.0807325105

    Article  Google Scholar 

  4. K. Onar, M.E. Yakinci, Solid state synthesis and characterization of bulk b-FeSe superconductors. J. Alloy. Compd. 620, 210–216 (2015). https://doi.org/10.1016/j.jallcom.2014.09.045

    Article  Google Scholar 

  5. M. Rotter, M. Tegel, D. Johrendt, Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. Phys. Rev. Lett. 101, 107006 (2008). https://doi.org/10.1103/PhysRevLett.101.107006

    Article  Google Scholar 

  6. C. Senatore, R. Flükiger, M. Cantoni, G. Wu, R.H. Liu, X.H. Chen, Upper critical fields well above 100 T for the superconductor SmFeAsO0.85F0.15 with Tc = 46 K. Phys. Rev. B 78, 054514 (2008). https://doi.org/10.1103/PhysRevB.78.054514

    Article  Google Scholar 

  7. X.C. Wang, Q.Q. Liu, Y.X. Lv, W.B. Gao, L.X. Yang, R.C. Yu, F.Y. Li, C.Q. Jin, The superconductivity at 18 K in LiFeAs system. Solid State Commun. 148, 538–540 (2008). https://doi.org/10.1016/j.ssc.2008.09.057

    Article  Google Scholar 

  8. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0˂x˂1.0). Phys. Rev. B 82, 180520 (2010). https://doi.org/10.1103/PhysRevB.82.180520

    Article  Google Scholar 

  9. M. Shahbazi, X.L. Wang, S.X. Dou, H. Fang, C.T. Lin, The flux pinning mechanism, and electrical and magnetic anisotropy in Fe1.04Te0.6Se0.4 superconducting single crystal. J. Appl. Phys. 113, 17E115 (2013). https://doi.org/10.1063/1.4794134

    Article  Google Scholar 

  10. H. Yang, H. Luo, Z. Wang, H.H. Wen, Fishtail effect and the vortex phase diagram of single crystal Ba0.6K0.4Fe2As2. Appl. Phys. Lett. 93, 142506 (2008). https://doi.org/10.1063/1.2996576

    Article  Google Scholar 

  11. D.L. Sun, Y. Liu, C.T. Lin, Comparative study of upper critical field Hc2 and second magnetization peak Hsp in hole- and electron-doped BaFe2As2 superconductor. Phys. Rev. B 80, 144515 (2009). https://doi.org/10.1103/PhysRevB.80.144515

    Article  Google Scholar 

  12. A. Yamamoto, J. Jaroszynski, C. Tarantini, L. Balicas, J. Jiang, A. Gurevich, D.C. Larbalestier, R. Jin, A.S. Sefat, M.A. McGuire, B.C. Sales, D.K. Christen, D. Mandrus, Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1 – xCox)2. Appl. Phys.Lett. 94, 062511 (2009). https://doi.org/10.1063/1.3081455

    Article  Google Scholar 

  13. A.K. Pramanik, S. Aswartham, A.U.B. Wolter, S. Wurmehl, V. Kataev, B. Buchner, Flux dynamics and avalanches in the 122 pnictide superconductor Ba0.65Na0.35Fe2As2. J. Phys. Condens. Matter. 25, 495701 (2013). https://doi.org/10.1088/0953-8984/25/49/495701

    Article  Google Scholar 

  14. H. Lei, C. Petrovic, Giant increase in critical current density of KxFe2 – ySe2 single crystals. Phys. Rev. B 84, 212502 (2011). https://doi.org/10.1103/PhysRevB.84.212502

    Article  Google Scholar 

  15. C. Tarantini, S. Lee, Y. Zhang, J. Jiang, C.W. Bark, J.D. Weiss, A. Polyanskii, C.T. Nelson, H.W. Jang, C.M. Folkman, S.H. Baek, X.Q. Pan, A. Gurevich, E.E. Hellstrom, C.B. Eom, D.C. Larbalestier, Strong vortex pinning in Co-doped BaFe2As2 single crystal thin films. Appl. Phys. Lett. 96, 142510 (2010). https://doi.org/10.1063/1.3383237

    Article  Google Scholar 

  16. N. Haberkorn, B. Maiorov, M. Jaime, I. Usov, M. Miura, G.F. Chen, W. Yu, L. Civale, Effect of doping on structural and superconducting properties in Ca1 – xNaxFe2As2 single crystals (x = 0.5, 0.6, 0.75). Phys. Rev. B 64, 064533 (2011). https://doi.org/10.1103/PhysRevB.84.064533

    Article  Google Scholar 

  17. D. Bhoi, P. Mandal, P. Choudhury, S. Dash, A. Banerjee, The magnetization of PrFeAsO0.60F0.12 superconductor. Physica C Supercond. 471(7–8), 258 (2011). https://doi.org/10.1016/j.physc.2011.02.004

  18. J.C. Zhuang, Y. Sun, Y. Ding, F.F. Yuan, J.T. Liu, Z.X. Shi, Flux pinning properties and magnetic relaxation of superconducting SmFe0.9Co0.1AsO. Mod. Phys. Lett. B 26, 1250197 (2012). https://doi.org/10.1142/S0217984912501977

    Article  Google Scholar 

  19. J.B. Anooja, P.M. Aswathy, N. Varghese, K. Vinod, A. Bharathi, U. Syamaprasad, Transport and magnetic properties of yttrium doped NdFeAs(O,F) superconductor. J.Alloy Comp. 566, 43–49 (2013). https://doi.org/10.1016/j.jallcom.2013.02.125

    Article  Google Scholar 

  20. P.J.W. Moll, R. Puzniak, F. Balakirev, K. Rogacki, J. Karpinski, N.D. Zhigadlo, B. Batlogg, High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications. Nat. Mater. 9, 628 (2010). https://doi.org/10.1038/NMAT2795

    Article  Google Scholar 

  21. C.S. Yadav, P.L. Paulose, The flux pinning force and vortex phase diagram of single crystal FeTe0.60Se0.40. Solid State Commun. 151, 216–218 (2011). https://doi.org/10.1016/j.ssc.2010.11.030

    Article  Google Scholar 

  22. M. Bonura, E. Giannini, R. Viennois, C. Senatore, Temperature and time scaling of the peak-effect vortex configuration in FeTe0.7Se0.3. Phys. Rev. B 85, 134532 (2012). https://doi.org/10.1103/PhysRevB.85.134532

    Article  Google Scholar 

  23. Z.F. Wu, Z.H. Wang, J. Tao, L. Qiu, S.G. Yang, H.H. Wen, Flux pinning and relaxation in FeSe0.5Te0.5 single crystals. Supercond. Sci. Technol. 29, 035006 (2016). https://doi.org/10.1088/0953-2048/29/3/035006

    Article  Google Scholar 

  24. R. Viennoisa, E. Gianninia, D. Van Der Marela, R. Cern, Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe1 + xTe1 – ySey. J. Solid State Chem. 183, 769–775 (2010). https://doi.org/10.1016/j.jssc.2010.01.024

    Article  Google Scholar 

  25. C. Koz, S. Roßler, A.A. Tsirlin, S. Wirth, U. Schwarz, Low-temperature phase diagram of Fe1 + yTe studied using X-ray diffraction. Phys. Rev. B 88, 094509 (2013). https://doi.org/10.1103/PhysRevB.88.094509

    Article  Google Scholar 

  26. T.M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H.W. Zandbergen, Y.S. Hor, J. Allred, A.J. Williams, D. Qu, J. Checkelsky, N.P. Ong, R.J. Cava, Extreme sensitivity of superconductivity to stoichiometry in FeSe (Fe1 + dSe). Phys. Rev. B 79, 014522 (2009). https://doi.org/10.1103/PhysRevB.79.014522

    Article  Google Scholar 

  27. K. Onar, B. Özçelik, N.K. Güler, H. Okazaki, H. Takeya, Y. Takano, M.E. Yakinci, Enhanced physical properties of single crystal Fe0.99Te0.63Se0.37 prepared by self-flux synthesis method. J. Alloy. Compd. 683, 164–170 (2016). https://doi.org/10.1016/j.jallcom.2016.05.086

    Article  Google Scholar 

  28. E.H. Brandt, Irreversible magnetization of pin-free type-II superconductors. Phys. Rev. B 60, 11939 (1999). https://doi.org/10.1103/PhysRevB.60.11939

    Article  Google Scholar 

  29. D. Dew-Hughes, Flux pinning mechanisms in type II superconductors. Phil. Mag. 30, 293–305 (1974). https://doi.org/10.1080/14786439808206556

    Article  Google Scholar 

  30. E.J. Kramer, Scaling laws for flux pinning in hard superconductors. J. Appl. Phys. 44, 1360 (1973). https://doi.org/10.1063/1.1662353

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Fund of Cukurova University [Grant Nos.: FDK-2017-8224, FBA-2015-4464].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Farisoğulları.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farisoğulları, D., Güler, N.K., Yakıncı, K. et al. The cooling rate effect on structure and flux pinning force of FeTeSe single crystal deposited by self-flux method. J Mater Sci: Mater Electron 29, 6477–6483 (2018). https://doi.org/10.1007/s10854-018-8629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8629-8

Navigation