Skip to main content
Log in

Crystal structure, microstructure and microwave dielectric properties of novel MgAl2Ti3O10 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, a novel MgAl2Ti3O10 ceramic was obtained using a traditional solid-state reaction method. X-ray diffraction and energy dispersive spectrometer showed that the main MgAl2Ti3O10 phase was formed after sintered at 1300–1450 °C. With rising the sintering temperature from 1300 to 1450 °C, the bulk density (ρ), relative permittivity (ε r ) and Q × f value firstly increased, reached the maximum values (3.61 g/cm3, 14.9, and 26,450 GHz) and then decreased. The temperature coefficient of resonator frequency (τ f ) showed a slight change at a negative range of − 94.6 to − 83.7 ppm/°C. When the sintering temperature was 1400 °C, MgAl2Ti3O10 ceramics exhibited the best microwave dielectric properties with Q × f = 26,450 GHz, ε r  = 14.9 and τ f  = − 83.7 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.T. Zhang, S.Q. Xu, D.X. Zhou, Development of microwave dielectric materials and its applications. Electron. Compon. Mater. 23, 6–9 (2004)

    Google Scholar 

  2. Z.Y. Zou, Z.H. Chen, X.K. Lan, W.Z. Lu, B. Ullah, X.H. Wang, W. Lei, Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+x)Si2O(7+x) ceramics. J. Eur. Ceram. Soc. 37, 3065–3071 (2017)

    Article  Google Scholar 

  3. L.X. Pang, D. Zhou, W.G. Liu, Low-temperature sintering and microwave dielectric properties of CaMo4-based temperature stable LTCC material. J. Am. Ceram. Soc. 97, 2032–2034 (2014)

    Article  Google Scholar 

  4. H.F. Zhou, J. Huang, X.H. Tan, Microwave dielectric properties of low-permittivity CaMgSiO4 ceramic. J. Mater. Sci. Mater. Electron. 28, 15258–15262 (2017)

    Article  Google Scholar 

  5. X.K. Lan, Z.Y. Zou, W.Z. Lu, J.H. Zhu, W. Lei, Phase transition and low-temperature sintering of Zn(Mn1−xAl x )2O4 ceramics for LTCC applications. Ceram. Int. 42, 17731–17735 (2016)

    Article  Google Scholar 

  6. Q.L. Zhang, H. Yang, H.P. Sun, A new microwave ceramic with low-permittivity for LTCC applications. J. Eur. Ceram. Soc. 28, 605–609 (2008)

    Article  Google Scholar 

  7. W. Lei, W.Z. Lu, X.H. Wang, F. Liang, J. Wang, Phase composition and microwave dielectric properties of ZnAl2O4–Co2TiO4 low-permittivity ceramics with high quality factor. J. Am. Ceram. Soc. 94, 20–23 (2011)

    Article  Google Scholar 

  8. C.C. Xia, D.H. Jiang, G.H. Chen, Y. Luo, Microwave dielectric ceramic of LiZnPO4 for LTCC applications. J. Mater. Sci. Mater. Electron. 28, 12026–12031 (2017)

    Article  Google Scholar 

  9. W.C. Tzou, Y.S. Yang, C.F. Yang, Microstructure and microwave dielectric characteristics of (1 − x)Ba(Zn1/3Ta2/3)O3xBaTi4O9 ceramics. Mater. Res. Bull. 42, 1897–1904 (2007)

    Article  Google Scholar 

  10. T. Takada, S.F. Wang, S. Yoshikawa, Effects of glass additions on (Zr, Sn)TiO4 for microwave applications. J. Am. Ceram. Soc. 77, 2485–2488 (2010)

    Article  Google Scholar 

  11. G.H. Jonker, W. Kwestroo, The ternary systems BaO–TiO2–SnO2 and BaO–TiO2–ZrO2. J. Am. Ceram. Soc. 41, 390–394 (2010)

    Article  Google Scholar 

  12. H. Kagata, R. Saito, H. Katsumura, Al2O3–MgO–ReO x (Re = rare earth) based LTCC and its applications to multilayer non-shrinkage substrate for microwave devices. J. Electroceram. 13, 277–280 (2004)

    Article  Google Scholar 

  13. D.R. Bridge, D. Holland, P.W. McMillan, Development of the alpha-cordierite phase in glass ceramics for use in electronic devices. Glass Technol. 26, 286–292 (1985)

    Google Scholar 

  14. J.D. Hodge, Microstructure development in mullite-cordierite ceramics. J. Am. Ceram. Soc. 72, 1295–1298 (1989)

    Article  Google Scholar 

  15. S.H. Wang, D. Zhou, Z.X. Hou, M.H. Wang, Low-temperature sintering, low-dielectric cordierite ceramic tapes for high frequency application. Ceram. Int. 39, 9505–9509 (2013)

    Article  Google Scholar 

  16. S. Wu, K.X. Song, P. Liu, H.X. Lin, F.F. Zhang, Effect of TiO2 doping on the structure and microwave dielectric properties of cordierite ceramics. J. Am. Ceram. Soc. 98, 1842–1847 (2015)

    Article  Google Scholar 

  17. Q.S. Cao, W.Z. Lu, Z.Y. Zou, Phase compositions and reaction models of zinc manganese oxides with different Zn/Mn ratios. J. Alloy. Compd. 661, 196–200 (2016)

    Article  Google Scholar 

  18. D.R. Askins, A study of overheat damage to structural composites. Int. SAMPE Tech. Conf. 24, T806–T820 (1992)

    Google Scholar 

  19. P.Q. Xu, H.Y. Gong, G.X. Xu, Study on microstructure and properties of Ni-based alloy/Y2O3-deposited metals by laser cladding. J. Mater. Sci. 43, 1559–1567 (2008)

    Article  Google Scholar 

  20. H.F. Zhou, X.H. Tan, J. Huang, Sintering behavior, phase structure and adjustable microwave dielectric properties of Li2O–MgO–nTiO2 ceramics (1 ≤ n ≤ 5). J. Mater. Sci. Mater. Electron. 28, 6475–6480 (2017)

    Article  Google Scholar 

  21. B.S. Kim, E.S. Lim, J.H. Lee, Effect of Bi2O3 content on sintering and crystallization behavior of low-temperature firing Bi2O3–B2O3–SiO2 glasses. J. Eur. Ceram. Soc. 27, 819–824 (2007)

    Article  Google Scholar 

  22. M. Guo, G. Dou, S.P. Gong, D.X. Zhou, Low-temperature sintered MgWO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. J. Eur. Ceram. Soc. 32, 883–890 (2012)

    Article  Google Scholar 

  23. H.S. Park, K.H. Yoon, Relationship between the band valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1−xCa x )[Fe0.5(Nb1−yTa y )0.5]O3. J. Am. Ceram. Soc. 84, 99–103 (2001)

    Article  Google Scholar 

  24. S. Chen, S.R. Zhang, X.H. Zhou, Low temperature preparation of the Zn2SiO4 ceramics with the addition of BaO and B2O3. J. Mater. Sci. Mater. Electron. 22, 1274–1281 (2011)

    Article  Google Scholar 

  25. P.V. Bijumon, M.T. Sebastian, P. Mohanan, Experimental investigations and three dimensional transmission line matrix simulation of Ca5−xA x B2TiO12 (A = Mg, Zn, Ni and Co; B = Nb and Ta) ceramic resonators. J. Appl. Phys. 98, 526 (2005)

    Article  Google Scholar 

  26. R.C. Pullar, C. Lai, F. Azough, R. Freer, N.M. Alford, Novel microwave dielectric LTCCs based upon V2O5 doped M2+Cu2Nb2O8 compounds (M2+ = Zn, Co, Ni, Mg and Ca). J. Eur. Ceram. Soc. 26, 1943–1946 (2006)

    Article  Google Scholar 

  27. J.S. Kim, J.C. Lee, C.I. Cheon. H.J. Kang, Crystal structures and low temperature cofiring ceramic property of (1 − x)(Li, Re)W2O8xBaWO4 ceramics (Re = Y, Yb). Jpn. J. Appl. Phys. 45, 7397–7400 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11464009, 61761015, 11664008 and 11364012), Natural Science Foundation of Guangxi (Nos. 2017GXNSFDA198027, 2015GXNSFDA139033 and 2017GXNSFFA198011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Sun, W., Huang, J. et al. Crystal structure, microstructure and microwave dielectric properties of novel MgAl2Ti3O10 ceramic. J Mater Sci: Mater Electron 29, 6232–6235 (2018). https://doi.org/10.1007/s10854-018-8599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8599-x

Navigation