Skip to main content
Log in

Texturization of ZnO:Al surface by reactive ion etching in SF6/Ar, CHF3/Ar plasma for application in thin film silicon solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As-deposited sputtered ZnO:Al (AZO) thin films having high transparency (T ≥ 85% at 550 nm of wavelength) and good electrical properties (ρ = 2.59 × 10−04 Ω cm) are etched to get suitable light trapping in thin film solar cells, using reactive ion etching method in sulfur hexafluoride–argon (SF6/Ar) plasma and trifluoromethane–argon (CHF3/Ar) plasma to texture their surface. Though the electrical properties of the films are not affected much by the etching process but significant increment in the average haze values in the wave length range of 350–1100 nm in the etched AZO films (19.21% for SF6/Ar and 22.07% for CHF3/Ar plasma etched) are found compared to as-deposited AZO films (5.61%). Increment in haze value is due to more scattering of light from the textured surface. These textured substrates are used as front transparent conducting oxide electrode for the fabrication of amorphous silicon solar cells. Solar cells fabricated on etched AZO substrates show 7.76% increase in conversion efficiency compared to as-deposited AZO substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Rech, S. Wieder, C. Beneking, A. Loffl, O. Kluth, W. Reetz, H. Wagner, Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells. In Photovoltaic Specialists Conference, Anaheim, CA, USA, 1997, Conference Record of the Twenty-Sixth IEEE. https://doi.org/10.1109/PVSC.1997.654165

  2. A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch et al., Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 12, 113–142 (2004). https://doi.org/10.1002/pip.533

    Article  Google Scholar 

  3. W. Beyer, J. Hüpkes, H. Stiebig, Transparent conducting oxide films for thin film silicon photovoltaics. Thin Solid Films. 516, 147–154 (2007). https://doi.org/10.1016/j.tsf.2007.08.110

    Article  Google Scholar 

  4. J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells. Sol. Energy 77, 917–930 (2004). https://doi.org/10.1016/j.solener.2004.03.015

    Article  Google Scholar 

  5. P.J.M. Isherwood, M. Gona, J.W. Bowers, N. Neves, P. Newbatt, J.M. Walls, Comparison of DC and RF sputtered aluminium-doped zinc oxide for photovoltaic applications. In Proceedings of the IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, 2015. https://doi.org/10.1109/PVSC.2015.7355900

  6. B. Choi, H. Im, J. Song, K. Yoon, Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering. Thin Solid Films 193–194, 712–720 (1990). https://doi.org/10.1016/0040-6090(90)90223-Z

    Article  Google Scholar 

  7. Y. Zhao, H. Yang, B. Yang, Z. Liu, P. Yang, Effects of uniaxial stress on the electrical structure and optical properties of Al-doped n-type ZnO. Sol. Energy 140, 21–26 (2016). https://doi.org/10.1016/j.solener.2016.10.035

    Article  Google Scholar 

  8. J. Morris, R.R. Arya, J.G. Odowd, S. Wiedeman, Absorption enhancement in hydrogenated amorphous siliconbased solar cells. J. Appl. Phys. 67(2) 1079–1087 (1990). https://doi.org/10.1063/1.345793

    Article  Google Scholar 

  9. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J. Appl. Phys. 101, 074903 (2007). https://doi.org/10.1063/1.2715554

    Article  Google Scholar 

  10. G. Das, S. Mandal, S. Dhar, S. Bose, S. Mukhopadhyay, C. Banerjee, A.K. Barua, Role of dual SiOx: H based buffer at the p/i interface on the performance of single junction microcrystalline solar cells. Mater. Sci. Semicond. Process. 66, 9–14 (2017). https://doi.org/10.1016/j.mssp.2017.03.033

    Article  Google Scholar 

  11. G. Das, S. Mandal, S. Dhar, S. Bose, J.R. Sharma, S. Mukhopadhyay, C. Banerjee, A.K. Barua, Development of improved n-µc-SiOx:H films and its innovative application in silicon-based single junction thin film solar cells. IEEE J. Photovolt. (2017). https://doi.org/10.1109/JPHOTOV.2017.2655721

  12. J. Jung, S. Kim, C. Shin, J. Park, J. Yi, Backside etching process for enhancing the light trapping capacity and electrical properties of Micromorph tandem solar cells. J. Nanosci. Nanotechnol. 17(11), 8158–8162 (2017). https://doi.org/10.1166/jnn.2017.15121

  13. G. Das, S. Mandal, S. Dhar, P.B. Bhargav, C. Banerjee, S. Mukhopadhyay, A.K. Barua, Synthesis of ITO nanoparticles at room temperature using plasma treatment process and use it as back reflector in a-Si flexible solar cell. Surf. Interfaces 7, 83–86 (2017). https://doi.org/10.1016/j.surfin.2017.03.002

    Article  Google Scholar 

  14. V. Jovanova, E. Moulin, F.-J. Haug, A. Tamang, S.I.H. Bali, C. Ballif, D. Knipp, From randomly self-textured substrates to highly efficient thin film solar cells: Influence of geometric interface engineering on light trapping, plasmonic losses and charge extraction. Sol. Energy Mater. Sol. Cells 160, 141–148 (2017). https://doi.org/10.1016/j.solmat.2016.10.005

  15. G. Das, S. Mandal, S. Dhar, S. Bose, S. Mukhopadhyay, C. Banerjee, A.K. Barua, Development of n-type microcrystalline SiOx:H films and its application by innovative way to improve the performance of single junction µc-Si:H solar cell. J. Mater. Sci.: Mater. Electron. 28(8), 5746–5753 (2017). https://doi.org/10.1007/s10854-016-6246-y

    Google Scholar 

  16. S. Mandal, G. Das, S. Dhar, R.M. Tomy, S. Mukhopadhyay, C. Banerjee et al., Development of a novel fluorinated n-nc-SiO:H material for solar cell application. Mater. Chem. Phys. 157, 130–137 (2015). https://doi.org/10.1016/j.matchemphys.2015.03.027

    Article  Google Scholar 

  17. A.G. X.Yan, Venkataraj, Aberle, Modified surface texturing of aluminium-doped zinc oxide (AZO) transparent conductive oxides for thin-film silicon solar cells. Energy Procedia 33, 157–165 (2013). https://doi.org/10.1016/j.egypro.2013.05.053

    Article  Google Scholar 

  18. W.L. Lu, K.C. Huang, C.H. Yeh, C.I. Hung, M.P. Houng, Investigation of textured Al-doped ZnO thin films using chemical wetetching methods. Mater. Chem. Phys. 127, 358–363 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.019

    Article  Google Scholar 

  19. S.O. Klemm, S.E. Pust, A.W. Hassel, J. Hüpkes, K.J.J. Mayrhofer, Electrochemical texturing of Al-doped ZnO thin films for photovoltaic applications. J Solid State Electrochem. 16, 283–290 (2012). https://doi.org/10.1007/s10008-011-1313-z

    Article  Google Scholar 

  20. Y.C. Lin, Y.C. Jian, J.H. Jiang, A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film. Appl. Surf. Sci. 254(9), 2671–2677 (2008). https://doi.org/10.1016/j.apsusc.2007.10.012

    Article  Google Scholar 

  21. O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, H.W. Schock, Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films. 351, 247–253 (1999). https://doi.org/10.1016/S0040-6090(99)00085-1

    Article  Google Scholar 

  22. H. Zhu, J. Hüpkes, E. Bunte, J. Owen, S.M. Huang, Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells. Sol. Energy Mater. Sol. Cells 95, 964–968 (2011). https://doi.org/10.1016/j.solmat.2010.11.033

    Article  Google Scholar 

  23. C. Jeong, S. Boo, H.-S. Kim, D.-R. Chang, M. Jeon, K. Kamisako, Investigation on the texture effect of RF magnetron-sputtered ZnO:Al Thin films etched by using an ICP etching method for heterojunction Si solar cell applications. J. Korean Phys. Soc. 53(1), 431–436 (2008)

    Article  Google Scholar 

  24. M.F. Abdullah, M.A. Alghoul, H. Naser, N. Asim, S. Ahmadi, B. Yatim, K. Sopian, Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell. Renew. Sustain. Energy Rev. 66, 380–398 (2016). https://doi.org/10.1016/j.rser.2016.07.065

    Article  Google Scholar 

  25. J.C. Lin, K.C. Peng, C.A. Tseng, S.L. Lee, Deposition of Al-doped and Al, Scco-doped zinc oxide films by RF- and DC-sputtering of the ZnO and Al-xSc (x = 0, 0.4, 0.8 and 1.7 wt.%) targets. Surf. Coat. Technol. 202(22–23), 5480–5483 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.088

    Article  Google Scholar 

  26. Y.H. Hu, L.F. Wang, H.J. Xu, Y.C. Chen, W.H. Jiang, The low-cost preparation of pyramid-like texture ZnO thin films and the application as a front electrode in hydrogen amorphous silicon solar cells. Proc. SPIE 7658, (76580D)1 (2010). https://doi.org/10.1117/12.866212

    Article  Google Scholar 

  27. J.S. Park, H.J. Park, Y.B. Hahn, G.-C. Yi, A. Yoshikawa, Dry etching of ZnO films and plasma-induced damage to optical properties. J. Vac. Sci. Technol. B 21, 800 (2003). https://doi.org/10.1116/1.1563252

    Article  Google Scholar 

  28. W.T. Lim, I.K. Baek, J.W. Lee, E.S. Lee, M.H. Jeon, G.S. Cho, Y.W. Heo, K.P. Norton, S.J. Pearton, Temperature-dependent Cl2 ÕAr plasma etching of bulk single-crystal ZnO. Appl. Phys. Lett. 83, 15 (2003). https://doi.org/10.1063/1.1618373

    Article  Google Scholar 

  29. S.W. Na, M.H. Shin, Y.M. Chung, J.G. Han, S.H. Jeung, J.H. Boo, N.-E. Lee, Etching characteristics of ZnO thin films in chlorine-containing inductively coupled plasmas. Microelectron. Eng. 83, 328 (2006). https://doi.org/10.1016/j.mee.2005.09.007

    Article  Google Scholar 

  30. J.W. Bae, C.H. Jeong, H.K. Kim, K.K. Kim, N.G. Cho, T.Y. Seong, S.J. Park, I. Adesida, G.Y. Yeom, High-rate dry etching of ZnO in BCl3/CH4/H2 plasmas. Jpn. J. Appl. Phys. 42, L535 (2003)

    Article  Google Scholar 

  31. H.-K. Kim, J.W. Bae, K.-K. Kim, S.-J. Park, T.-Y. Seong, I. Adesida, Inductively-coupled-plasma reactive ion etching of ZnO using BCl3-based plasmas and effect of the plasma treatment on Ti/Au ohmic contacts to ZnO. Thin Solid Films 447–448, 90 (2004) https://doi.org/10.1016/j.tsf.2003.09.028

    Article  Google Scholar 

  32. H.-K. Kim, J.-W. Bae, T.-K. Kim, K.-K. Kim, T.-Y. Seong, I. Adesida, Inductively coupled plasma reactive ion etching of ZnO using BCl3-based plasmas. J. Vac. Sci. Technol. B. 21, 1273 (2003). https://doi.org/10.1116/1.1575250

    Article  Google Scholar 

  33. J.-M. Lee, K.-M. Chang, K.-K. Kim, W.-K. Choi, S.-J. Park, Dry etching of ZnO using an inductively coupled plasma. J. Electrochem. Soc. 148, G1 (2001). https://doi.org/10.1149/1.1344554

    Article  Google Scholar 

  34. K. Ip, K.H. Baik, M.E. Overberg, E.S. Lambers, Y.W. Heo, D.P. Norton, S.J. Pearton, F. Ren, J.M. Zavada, Effect of high-density plasma etching on the optical properties and surface stoichiometry of ZnO. Appl. Phys. Lett. 81, 3546 (2002). https://doi.org/10.1063/1.1519095

    Article  Google Scholar 

  35. S.W. Na, M.H. Shin, Y.M. Chung, J.G. Han, N.-E. Lee, Investigation of process window during dry etching of ZnO thin films by CH4–H2–Ar inductively coupled plasma. J. Vac. Sci. Technol. A 23, 898 (2005). https://doi.org/10.1116/1.1894420

    Article  Google Scholar 

  36. M.H. Shin, M.S. Park, S.H. Jung, J.H. Boo, N.-E. Lee, Effect of doping elements on ZnO etching characteristics with CH4/H2/Ar plasma. Thin Solid Films 515, 4950 (2007) https://doi.org/10.1016/j.tsf.2006.10.031

    Article  Google Scholar 

  37. K. Maruyama, K. Ohkouchi, Y. Ohtsu, T. Goto, CF3, CF2 and CF radical measurements in RF CHF3 etching plasma using infrared diode laser absorption spectroscopy. Jpn. J. Appl. Phys. 33, 4298–4302 (1994)

    Article  Google Scholar 

  38. A.V. Joshi, Decomposition of SF6–R134a effluents by RF plasma. Nucl. Instr. Methods Phys. Res. A. 661, S245–S248 (2012). https://doi.org/10.1016/j.nima.2010.08.072

    Article  Google Scholar 

  39. D. Kim, I. Hwang, J. Son, H. Kim, Inductively coupled-plasma dry etching of a ZnO thin film by Ar-diluted CF4 gas. J. Korean Phys. Soc. 58(5), 1536–1540 (2011)

  40. Y. Wang, H. Wang, C. Liu, Y. Wang, S. Peng, W. Peng, Effect of NaOH solution on surface textured ZnO: Al films prepared by pulsed direct current magnetron sputtering. Mater. Sci. Semicond. Process. 15, 555–558 (2012). https://doi.org/10.1016/j.mssp.2012.04.007

    Article  Google Scholar 

  41. W.L. Lu, K.C. Huang, C.H. Yeh, C.I. Hung, M.P. Houng, Investigation of textured Al-doped ZnO thin films using chemical wet-etching methods. Mater. Chem. Phys. 127, 358–363 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.019

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Ministry of New and Renewable Energy (MNRE), Govt. of India. The authors are grateful to Prof. H Saha, Principal Investigator of the project for his encouragement and help. Authors would also like to thank Mr, D. Shome, (Technical Consultant) for his excellent support in experimental deposition of thin films. Authors, Dr. Gourab Das acknowledges DST-SERI for financial support and Mr. Sukanta Bose acknowledges SERB-DST for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourab Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, G., Bose, S., Sharma, J.R. et al. Texturization of ZnO:Al surface by reactive ion etching in SF6/Ar, CHF3/Ar plasma for application in thin film silicon solar cells. J Mater Sci: Mater Electron 29, 6206–6214 (2018). https://doi.org/10.1007/s10854-018-8596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8596-0

Navigation