Advertisement

Microstructural and electrical transport properties of uniaxially pressed \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2.5}\text {Cu}_{3.5}\text {O}_{10+\delta }\) ceramic superconductors

  • A. Cruz-GarcíaEmail author
  • J. R. Fernández-Gamboa
  • E. Altshuler
  • R. F. Jardim
  • O. Vazquez-Robaina
  • P. MunéEmail author
Article

Abstract

We have studied the effect of the pelletization pressure on microstructural and electrical transport properties of superconducting ceramics with starting composition given by the formula \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2.5}\text {Cu}_{3.5}\text {O}_{10+\delta }\). The experimental data of electrical measurements was processed in order to obtain the weak-link resistivity, the orientation probability of the grains’ a-axes along a certain preferential direction, the slope of the linear part in the temperature dependence of the ab-planes resistivity, and the intrinsic effective anisotropy of the grains, of each sample. In contrast with the behaviour of \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2}\text {Cu}_{3}\text {O}_{10+\delta }\) ceramics, the Ca, Cu enriched samples exhibit a reduction of their effective anisotropy at sample level and weak links resistivity with increasing compacting pressures. In addition, a compacting pressure of around 488 MPa may affect considerably the electrical and structural parameters of the material. The results suggest that a combined effect of the pelletization pressure and the doping with Ca and Cu can be used to improve the electrical transport properties of these materials for technological applications.

Notes

Acknowledgements

This work was partially supported by CAPES/MES-CUBA, Project 104/10. We thank the support of R. Packard (University of California at Berkeley) and all the help by F. Calderón-Piñar and O. García-Zaldivar (Group of Ferroelectricity and Magnetism, IMRE-Physics Faculty, University of Havana). We thank Professor Arbelio Pentón Madrigal (LAE, IMRE-Physics Faculty, Havana University) for useful discussions of the X-ray difraction patterns.

References

  1. 1.
    Z. Shengnan, L. Chengshan, H. Qingbin, M. Xiaobo, L. Tianni, Z. Pingxiang, Supercond. Sci. Technol. 28, 045014 (2015)CrossRefGoogle Scholar
  2. 2.
    W.M. Woch, M. Chrobak, M. Kowalik, R. Zalecki, M. Giebułtowski, J. Niewolski, Ł. Gondek, J. Alloys Compd. 692, 359–363 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Bai, F. Yang, P. Zhang, Q. Hao, J. Feng, S. Zhang, C. Li, J. Alloys Compd. 651, 78–81 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Kaya, B. Özçlik, B. Özkurt, A. Sotelo, M.A. Madre, J. Mater. Sci. 24, 1580–1586 (2013)Google Scholar
  5. 5.
    J.-C. Grivel, X.P. Yang, A.B. Abrahamsen, Z. Han, N.H. Andersen, M. von Zimmermann, J. Phys.: Conf. Ser. 234, 022012 (2010)Google Scholar
  6. 6.
    M. Pakdil, E. Bekiroglu, M. Oz, N.K. Saritekin, G. Yildirim, J. Alloys Compd. 673, 205–214 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Safran, A. Kılıç, O. Ozturk, J. Mater. Sci. 28(2), 1799–1803 (2016)Google Scholar
  8. 8.
    C. Terzioglu, J. Alloys Compd. 509, 87–93 (2011)CrossRefGoogle Scholar
  9. 9.
    D. Tripathi, T.K. Dey, J. Alloys Compd. 607, 264–273 (2014)CrossRefGoogle Scholar
  10. 10.
    H.K. Liu, Y.C. Guo, S.X. Dou, Supercond. Sci. Technol. 5(10), 591–598 (1992)CrossRefGoogle Scholar
  11. 11.
    V.S. Kravtchenko, M.A. Zhuravleva, Y.M. Uskov, O.G. Potapova, N.A. Bogoljubov, P.P. Bezverkhy, L.L. Makarshin, SUPA 21, 87–94 (1997)Google Scholar
  12. 12.
    M. Hernández-Wolpez, A. Cruz-García, O. Vázquez-Robaina, R.F. Jardim, P. Muné, Physica C 525–526, 84 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Stroud, Phys. Rev. B 12, 3368 (1975)CrossRefGoogle Scholar
  14. 14.
    A. Cruz-García, P. Muné, Physica C 527, 74–79 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Cruz-García, E. Altshuler, J.R. Fernández-Gamboa, R.F. Jardim, O. Vázquez-Robaina, P. Muné, J. Mater. Sci. 28(17), 13058–13069 (2017)Google Scholar
  16. 16.
    E. Govea-Alcaide, P. Muné, R.F. Jardim, Braz. J. Phys. 35(3A), 680 (2005)CrossRefGoogle Scholar
  17. 17.
    E. Govea-Alcaide, R.F. Jardim, P. Muné, Phys. Stat. Sol. 13, 2484 (2005)CrossRefGoogle Scholar
  18. 18.
    Yan-Yang Zhang, Hu Jiangping, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Phys. Rev. Lett. 102, 106401 (2009)CrossRefGoogle Scholar
  19. 19.
    P. Muné, E. Govea-Alcaide, R.F. Jardim, Physica C 384, 491 (2003)CrossRefGoogle Scholar
  20. 20.
    X. Yang, T.K. Chaki, Supercond. Sci. Technol. 6, 343–348 (1993)CrossRefGoogle Scholar
  21. 21.
    Kemal Kocabaş, Melis Gökçe, Muhsin Çiftçioğlu, Özlem Bilgili, J.Supercond. Nov. Magn. 23, 397–410 (2010)CrossRefGoogle Scholar
  22. 22.
    Villars, P., Cenzual, K.: Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM), version 1.0, Release 2007/8, ASM International, Materials ParkGoogle Scholar
  23. 23.
    F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959)CrossRefGoogle Scholar
  24. 24.
    G.A. Levin, J. Appl. Phys. 81, 714 (1997)CrossRefGoogle Scholar
  25. 25.
    J.L. González, J.S. Espinoza Ortiz, E. Baggio-Saitovitch, Physica C 315, 271 (1999)CrossRefGoogle Scholar
  26. 26.
    A. Díaz, J. Maza, Félix Vidal, Phys. Rev. B 55, 1209 (1997)CrossRefGoogle Scholar
  27. 27.
    C.W. Chiu, R.L. Meng, L. Gao, Z.J. Huang, F. Chen, Y.Y. Xue, Nature 365, 323 (1993)CrossRefGoogle Scholar
  28. 28.
    S.A. Halim, S.A. Khawaldeh, S.B. Mohammed, H. Azhan, Mater. Chem. Phys. 61, 251 (1999)CrossRefGoogle Scholar
  29. 29.
    J.M. Yoo, K. Mukherjee, Physica C 222, 241–251 (1994)CrossRefGoogle Scholar
  30. 30.
    Y. Nakamura, E. Akiba, J. Alloys Compd. 308, 309–18 (2000)CrossRefGoogle Scholar
  31. 31.
    Bish, D.L., Post, J.E.: Modern powder diffraction, Review of Mineralogy vol 20, ed. (Washington, DC: Mineralogical Society of America, 1989)Google Scholar
  32. 32.
    Vitalij K. Pecharsky, Peter Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd edn. (Springer, New York, 2009), pp. 170–179Google Scholar
  33. 33.
    F. Nakao, K. Osamura, Supercond. Sci. Technol. 18, 513–520 (2005)CrossRefGoogle Scholar
  34. 34.
    V.F. Shamraya, A.B. Mikhailova, A.V. Mitin, Crystallogr. Rep. 54(4), 584–590 (2009). Original Russian text published in Kristallografiya, 54(4), 623-629 (2009)CrossRefGoogle Scholar
  35. 35.
    C.P. Poole Jr., Handbook of Superconductivity (Academic Press, San Diego, 2000)Google Scholar
  36. 36.
    N. Kijima, H. Endo, J. Tsuchiya, A. Sumiyama, M. Mizuno, Y. Oguri, Jpn J. Appl. Phys. 28, L787–90 (1989)CrossRefGoogle Scholar
  37. 37.
    D. Pandey, R. Mahesh, A.K. Singh, V.S. Tiwari, Physica C 184, 135 (1991)CrossRefGoogle Scholar
  38. 38.
    T.T. Tan, S. Li, H. Cooper, W. Gao, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 14, 471 (2001)CrossRefGoogle Scholar
  39. 39.
    T. Fujii, T. Watanabe, A. Matsuda, Physica C 357, 173 (2001)CrossRefGoogle Scholar
  40. 40.
    T. Fujii, private comunicationGoogle Scholar
  41. 41.
    M. Sahoo, D. Behera, J. Mater. Sci. 1(4), 2–7 (2012)Google Scholar
  42. 42.
    D. Marconi, C. Lung, A.V. Pop, J. Alloy Compd. 579, 355–359 (2013)CrossRefGoogle Scholar
  43. 43.
    V.N. Zverev, D.V. Shovkun, I.G. Naumenko, JETP Lett. 68, 332 (1998)CrossRefGoogle Scholar
  44. 44.
    V.N. Zverev, D.V. Shovkun, JETP Lett. 72, 73 (2000)CrossRefGoogle Scholar
  45. 45.
    B.F. Logan, S.O. Rice, R.F. Wick, J. Appl. Phys. 42, 2975 (1971)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de OrienteSantiago de CubaCuba
  2. 2.Superconductivity Laboratory and Group of Complex Systems and Statistical Physics, IMRE-Physics FacultyUniversity of HavanaHavanaCuba
  3. 3.Departamento de Física dos Materiais e Mecânica, Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  4. 4.LIEES Department, IMRE-Physics FacultyUniversity of HavanaHavanaCuba

Personalised recommendations