# Microstructural and electrical transport properties of uniaxially pressed \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2.5}\text {Cu}_{3.5}\text {O}_{10+\delta }\) ceramic superconductors

- 128 Downloads
- 2 Citations

## Abstract

We have studied the effect of the pelletization pressure on microstructural and electrical transport properties of superconducting ceramics with starting composition given by the formula \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2.5}\text {Cu}_{3.5}\text {O}_{10+\delta }\). The experimental data of electrical measurements was processed in order to obtain the weak-link resistivity, the orientation probability of the grains’ *a*-axes along a certain preferential direction, the slope of the linear part in the temperature dependence of the ab-planes resistivity, and the intrinsic effective anisotropy of the grains, of each sample. In contrast with the behaviour of \(\text {Bi}_{1.65}\text {Pb}_{0.35}\text {Sr}_2\text {Ca}_{2}\text {Cu}_{3}\text {O}_{10+\delta }\) ceramics, the Ca, Cu enriched samples exhibit a reduction of their effective anisotropy at sample level and weak links resistivity with increasing compacting pressures. In addition, a compacting pressure of around 488 MPa may affect considerably the electrical and structural parameters of the material. The results suggest that a combined effect of the pelletization pressure and the doping with Ca and Cu can be used to improve the electrical transport properties of these materials for technological applications.

## Notes

### Acknowledgements

This work was partially supported by CAPES/MES-CUBA, Project 104/10. We thank the support of R. Packard (University of California at Berkeley) and all the help by F. Calderón-Piñar and O. García-Zaldivar (Group of Ferroelectricity and Magnetism, IMRE-Physics Faculty, University of Havana). We thank Professor Arbelio Pentón Madrigal (LAE, IMRE-Physics Faculty, Havana University) for useful discussions of the X-ray difraction patterns.

## References

- 1.Z. Shengnan, L. Chengshan, H. Qingbin, M. Xiaobo, L. Tianni, Z. Pingxiang, Supercond. Sci. Technol.
**28**, 045014 (2015)CrossRefGoogle Scholar - 2.W.M. Woch, M. Chrobak, M. Kowalik, R. Zalecki, M. Giebułtowski, J. Niewolski, Ł. Gondek, J. Alloys Compd.
**692**, 359–363 (2017)CrossRefGoogle Scholar - 3.L. Bai, F. Yang, P. Zhang, Q. Hao, J. Feng, S. Zhang, C. Li, J. Alloys Compd.
**651**, 78–81 (2015)CrossRefGoogle Scholar - 4.C. Kaya, B. Özçlik, B. Özkurt, A. Sotelo, M.A. Madre, J. Mater. Sci.
**24**, 1580–1586 (2013)Google Scholar - 5.J.-C. Grivel, X.P. Yang, A.B. Abrahamsen, Z. Han, N.H. Andersen, M. von Zimmermann, J. Phys.: Conf. Ser.
**234**, 022012 (2010)Google Scholar - 6.M. Pakdil, E. Bekiroglu, M. Oz, N.K. Saritekin, G. Yildirim, J. Alloys Compd.
**673**, 205–214 (2016)CrossRefGoogle Scholar - 7.S. Safran, A. Kılıç, O. Ozturk, J. Mater. Sci.
**28**(2), 1799–1803 (2016)Google Scholar - 8.C. Terzioglu, J. Alloys Compd.
**509**, 87–93 (2011)CrossRefGoogle Scholar - 9.D. Tripathi, T.K. Dey, J. Alloys Compd.
**607**, 264–273 (2014)CrossRefGoogle Scholar - 10.H.K. Liu, Y.C. Guo, S.X. Dou, Supercond. Sci. Technol.
**5**(10), 591–598 (1992)CrossRefGoogle Scholar - 11.V.S. Kravtchenko, M.A. Zhuravleva, Y.M. Uskov, O.G. Potapova, N.A. Bogoljubov, P.P. Bezverkhy, L.L. Makarshin, SUPA
**21**, 87–94 (1997)Google Scholar - 12.M. Hernández-Wolpez, A. Cruz-García, O. Vázquez-Robaina, R.F. Jardim, P. Muné, Physica C
**525–526**, 84 (2016)CrossRefGoogle Scholar - 13.D. Stroud, Phys. Rev. B
**12**, 3368 (1975)CrossRefGoogle Scholar - 14.A. Cruz-García, P. Muné, Physica C
**527**, 74–79 (2016)CrossRefGoogle Scholar - 15.A. Cruz-García, E. Altshuler, J.R. Fernández-Gamboa, R.F. Jardim, O. Vázquez-Robaina, P. Muné, J. Mater. Sci.
**28**(17), 13058–13069 (2017)Google Scholar - 16.E. Govea-Alcaide, P. Muné, R.F. Jardim, Braz. J. Phys.
**35**(3A), 680 (2005)CrossRefGoogle Scholar - 17.E. Govea-Alcaide, R.F. Jardim, P. Muné, Phys. Stat. Sol.
**13**, 2484 (2005)CrossRefGoogle Scholar - 18.Yan-Yang Zhang, Hu Jiangping, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Phys. Rev. Lett.
**102**, 106401 (2009)CrossRefGoogle Scholar - 19.P. Muné, E. Govea-Alcaide, R.F. Jardim, Physica C
**384**, 491 (2003)CrossRefGoogle Scholar - 20.X. Yang, T.K. Chaki, Supercond. Sci. Technol.
**6**, 343–348 (1993)CrossRefGoogle Scholar - 21.Kemal Kocabaş, Melis Gökçe, Muhsin Çiftçioğlu, Özlem Bilgili, J.Supercond. Nov. Magn.
**23**, 397–410 (2010)CrossRefGoogle Scholar - 22.Villars, P., Cenzual, K.: Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM), version 1.0, Release 2007/8, ASM International, Materials ParkGoogle Scholar
- 23.F.K. Lotgering, J. Inorg. Nucl. Chem.
**9**, 113 (1959)CrossRefGoogle Scholar - 24.G.A. Levin, J. Appl. Phys.
**81**, 714 (1997)CrossRefGoogle Scholar - 25.J.L. González, J.S. Espinoza Ortiz, E. Baggio-Saitovitch, Physica C
**315**, 271 (1999)CrossRefGoogle Scholar - 26.A. Díaz, J. Maza, Félix Vidal, Phys. Rev. B
**55**, 1209 (1997)CrossRefGoogle Scholar - 27.C.W. Chiu, R.L. Meng, L. Gao, Z.J. Huang, F. Chen, Y.Y. Xue, Nature
**365**, 323 (1993)CrossRefGoogle Scholar - 28.S.A. Halim, S.A. Khawaldeh, S.B. Mohammed, H. Azhan, Mater. Chem. Phys.
**61**, 251 (1999)CrossRefGoogle Scholar - 29.J.M. Yoo, K. Mukherjee, Physica C
**222**, 241–251 (1994)CrossRefGoogle Scholar - 30.Y. Nakamura, E. Akiba, J. Alloys Compd.
**308**, 309–18 (2000)CrossRefGoogle Scholar - 31.Bish, D.L., Post, J.E.: Modern powder diffraction, Review of Mineralogy vol 20, ed. (Washington, DC: Mineralogical Society of America, 1989)Google Scholar
- 32.Vitalij K. Pecharsky, Peter Y. Zavalij,
*Fundamentals of Powder Diffraction and Structural Characterization of Materials*, 2nd edn. (Springer, New York, 2009), pp. 170–179Google Scholar - 33.F. Nakao, K. Osamura, Supercond. Sci. Technol.
**18**, 513–520 (2005)CrossRefGoogle Scholar - 34.V.F. Shamraya, A.B. Mikhailova, A.V. Mitin, Crystallogr. Rep.
**54**(4), 584–590 (2009). Original Russian text published in Kristallografiya,**54**(4), 623-629 (2009)CrossRefGoogle Scholar - 35.C.P. Poole Jr.,
*Handbook of Superconductivity*(Academic Press, San Diego, 2000)Google Scholar - 36.N. Kijima, H. Endo, J. Tsuchiya, A. Sumiyama, M. Mizuno, Y. Oguri, Jpn J. Appl. Phys.
**28**, L787–90 (1989)CrossRefGoogle Scholar - 37.D. Pandey, R. Mahesh, A.K. Singh, V.S. Tiwari, Physica C
**184**, 135 (1991)CrossRefGoogle Scholar - 38.T.T. Tan, S. Li, H. Cooper, W. Gao, H.K. Liu, S.X. Dou, Supercond. Sci. Technol.
**14**, 471 (2001)CrossRefGoogle Scholar - 39.T. Fujii, T. Watanabe, A. Matsuda, Physica C
**357**, 173 (2001)CrossRefGoogle Scholar - 40.T. Fujii, private comunicationGoogle Scholar
- 41.M. Sahoo, D. Behera, J. Mater. Sci.
**1**(4), 2–7 (2012)Google Scholar - 42.D. Marconi, C. Lung, A.V. Pop, J. Alloy Compd.
**579**, 355–359 (2013)CrossRefGoogle Scholar - 43.V.N. Zverev, D.V. Shovkun, I.G. Naumenko, JETP Lett.
**68**, 332 (1998)CrossRefGoogle Scholar - 44.V.N. Zverev, D.V. Shovkun, JETP Lett.
**72**, 73 (2000)CrossRefGoogle Scholar - 45.B.F. Logan, S.O. Rice, R.F. Wick, J. Appl. Phys.
**42**, 2975 (1971)CrossRefGoogle Scholar