Skip to main content
Log in

Crystal shape engineering and studies on the performance of vapour deposited InSe platelets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of growth conditions on the morphology of stoichiometric indium monoselenide (InSe) crystals has been explored. Crystalline habits such as microfibres, needles, platelets and spherulites were obtained from physical vapour deposition by optimizing supersaturation, which sturdily depends on the temperature difference between charge (TC) and substrate (TS) zones ∆T, (= TC − TS). Morphology and growth mechanism were investigated with the aid of scanning electron microscopy and high-resolution transmission electron microscopy, which justified the layer by layer addition of atoms as per the Kossel–Stranski–Volmer model. Thermogravimetric measurements revealed the stability of InSe, confirming its melting point, M.P. = 611 °C, which reflects the formation of monophase. The mobility and carrier concentration calculated from the Hall effect experiment are found to be 11.14 cm2 V−1 s−1 and 1.52 × 1020 cm−3 respectively. Furthermore, optical characterizations such as UV–Vis–NIR and photoluminescence spectrometric analysis established the value of band gap as 1.45 eV, manifesting the versatility of the grown semiconducting platelets for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Li, P. Li, J. Hu, W. Zhang, J. Mater. Sci. Mater. Electron. 26, 5071 (2015)

    CAS  Google Scholar 

  2. C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, J. Phys. Chem. B 109, 19758 (2005)

    CAS  Google Scholar 

  3. X. Fang, C. Ye, L. Zhang, Y. Wang, Y. Wu, Adv. Funct. Mater. 15, 63 (2005)

    CAS  Google Scholar 

  4. B. Celustka, S. Popovic, J. Appl. Crystallogr. 12, 416 (1979)

    Google Scholar 

  5. T. Ishii, J. Cryst. Growth 89, 459 (1988)

    CAS  Google Scholar 

  6. A. Chevy, J. Cryst. Growth 51, 157 (1981)

    CAS  Google Scholar 

  7. C. De Blasi, G. Micocci, S. Mongelli, A. Tepore, J. Cryst. Growth 57, 482 (1982)

    Google Scholar 

  8. A. Chevy, A. Kuhn, M.S. Martin, J. Cryst. Growth 38, 118 (1977)

    CAS  Google Scholar 

  9. A. Chevy, J. Cryst. Growth 67, 119 (1984)

    CAS  Google Scholar 

  10. C. De Blasi, G. Micocci, S. Mongelli, A. Tepore, F. Zuanni, Mater. Chem. Phys. 9, 55 (1983)

    Google Scholar 

  11. V.M. Katerynchuk, M.Z. Kovalyuk, M.V. Tovarnitskii, Semicond. Phys. Quantum Electron. Optoelectron. 9, 36 (2006)

    CAS  Google Scholar 

  12. B.R. Pamplin, Crystal Growth. (Pergamon, Hungary, 1975)

    Google Scholar 

  13. P.M. Reshmi, A.G. Kunjomana, K.A. Chandrasekharan, Cryst. Res. Technol. 46, 153 (2011)

    CAS  Google Scholar 

  14. G. Thankamma, A.G. Kunjomana, J. Cryst. Growth 415, 65 (2015)

    CAS  Google Scholar 

  15. M. Teena, A.G. Kunjomana, J. Appl. Cryst. 50, 1125 (2017)

    CAS  Google Scholar 

  16. G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley, Springer Handbook of Crystal Growth. (Springer, London, 2010)

    Google Scholar 

  17. A.G. Kunjomana, M. Teena, K.A. Chandrasekharan, J. Appl. Cryst. 47, 1841 (2014)

    CAS  Google Scholar 

  18. H.J. Scheel, P. Capper, Crystal Growth Technology from Fundamentals and Simulation to Large-scale Production. (Wiley, Weinheim, 2008)

    Google Scholar 

  19. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, Adv. Funct. Mater. 27, 1700264 (2017)

  20. J. Wang, F. Cao, L. Jiang, Y. Guo, W. Hu, L. Wan, J. Am. Chem. Soc. 131, 15602 (2009)

    CAS  Google Scholar 

  21. J. Wu, Z. Hu, Z. Jin, S. Lei, H. Guo, K. Chatterjee, J. Zhang, Y. Yang, B. Li, Y. Liu, J. Lai, R. Vajtai, B. Yakobson, M. Tang, J. Lou, P.M. Ajayan, Adv. Mater. Interfaces, 3 (2016)

  22. J. George, C.K. Valsalakumari, Cryst. Res. Technol. 21, 273 (1986)

    CAS  Google Scholar 

  23. H. Okamoto, J. Phase Equilib. Diffus. 25, 201 (2004)

    CAS  Google Scholar 

  24. J.B. Li, M.C. Record, J.C. Tedenac, Int. J. Mater. Res. 94, 381 (2003)

    CAS  Google Scholar 

  25. D.W. Boukhvalov, B. Gurbulak, S. Duman, L. Wang, A. Politano, L.S. Caputi, G. Chiarello, A. Cupolillo, Nanomaterials 7, 372 (2017)

    Google Scholar 

  26. B. Gurbulak, M. Sata, S. Dogan, S. Duman, A. Ashkhasi, E.F. Keskenler, Physica E 64, 106 (2014)

    CAS  Google Scholar 

  27. T. Ikari, S. Shigetomi, Phys. Status Solid. 124, K49 (1984)

    CAS  Google Scholar 

  28. J.L. Brebner, T. Steiner, M.L.W. Thewalt, Solid State Commun. 56, 929 (1985)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Kochi for the timely help to perform characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kunjomana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teena, M., Kunjomana, A.G. Crystal shape engineering and studies on the performance of vapour deposited InSe platelets. J Mater Sci: Mater Electron 29, 5536–5547 (2018). https://doi.org/10.1007/s10854-018-8522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8522-5

Navigation