Skip to main content
Log in

Organic nanostructure sensing layer developed by AAO template for the application in humidity sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study demonstrates a novel nanoporous structure of aluminium 1,8,15,22-tetrakis 29H,31H phthalocyanine chloride (AlPcCl) prepared by template-assisted method for a humidity sensor. The nanoporous sensing layer was fabricated by solution wetting of anodic aluminium oxide template. The solutions of AlPcCl in different concentrations were spun cast over the template at various speeds. Both capacitive and resistive responses were measured as a function of different relative humidity levels. The sensor showed wide operating relative humidity range and responded at quite low humidity levels. Morphological changes were investigated by field emission scanning electron microscopy. The sensor showed wide operating relative humidity range. The sensor demonstrated better performance with improved sensing parameters, highlighting unique advantages of the low-molecular nanostructured sensing layer for the humidity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F. Aziz, A.A. Bakar, Z. Ahmad, T.M. Bawazeer, N. Alsenany, M.S. Alsoufi, A. Supangat, Template-assisted growth of nanoporous VTTBNc films: morphology and moisture sensitivity studies. Mater. Lett. 211, 195–198 (2018)

    Article  Google Scholar 

  2. K. Harris, A. Huizinga, M. Brett, High-speed porous thin film humidity sensors. Electrochem. Solid-State Lett. 5, H27–H29 (2002)

    Article  Google Scholar 

  3. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014)

    Article  Google Scholar 

  4. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B 23, 135–156 (1995)

    Article  Google Scholar 

  5. E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, Metal oxide nanoscience and nanotechnology for chemical sensors. Sens. Actuators B 179, 3–20 (2013)

    Article  Google Scholar 

  6. S. Wang, Y. Kang, L. Wang, H. Zhang, Y. Wang, Y. Wang, Organic/inorganic hybrid sensors: a review. Sens. Actuators B 182, 467–481 (2013)

    Article  Google Scholar 

  7. K.-J. Park, M.-S. Gong, A water durable resistive humidity sensor based on rigid sulfonated polybenzimidazole and their properties. Sens. Actuators B 246, 53–60 (2017)

    Article  Google Scholar 

  8. M. Eryürek, Z. Tasdemir, Y. Karadag, S. Anand, N. Kilinc, B. Alaca, A. Kiraz, Integrated humidity sensor based on SU-8 polymer microdisk microresonator. Sens. Actuators B 242, 1115–1120 (2017)

    Article  Google Scholar 

  9. F. Aziz, M. Sayyad, K.S. Karimov, M. Saleem, Z. Ahmad, S.M. Khan, Characterization of vanadyl phthalocyanine based surface-type capacitive humidity sensors. J. Semicond. 31, 114002 (2010)

    Article  Google Scholar 

  10. M.T.S. Chani, K.S. Karimov, F.A. Khalid, S.A. Moiz, Polyaniline based impedance humidity sensors. Solid State Sci. 18, 78–82 (2013)

    Article  Google Scholar 

  11. P. Li, Y. Li, B. Ying, M. Yang, Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sens. Actuators B 141, 390–395 (2009)

    Article  Google Scholar 

  12. M.I. Azmer, Q. Zafar, Z. Ahmad, K. Sulaiman, K.S. Karimov, VOPcPhO based organic pressure sensor and displacement transducer. Synth. Met. 191, 120–125 (2014)

    Article  Google Scholar 

  13. Q. Zafar, K. Sulaiman, Utility of PCDTBT polymer for the superior sensing parameters of electrical response based relative humidity sensor. React. Funct. Polym. 105, 45–51 (2016)

    Article  Google Scholar 

  14. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005)

    Article  Google Scholar 

  15. Z. Ahmad, M.H. Sayyad, K.S. Karimov, Capacitive hygrometers based on natural organic compound. J. Optoelectron. Adv. Mater. 2, 507 (2008)

    Google Scholar 

  16. E. Raza, M. Asif, F. Aziz, M.I. Azmer, H.A. Malik, C.-H. Teh, M.A. Najeeb, Q. Zafar, Z. Ahmad, F. Wahab, Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT 2. Sens. Actuators B 235, 146–153 (2016)

    Article  Google Scholar 

  17. F. Aziz, N.A. Bakar, S. Bashir, H. Alhummiany, T. Bawazeer, N. Alsenany, A. Mahmoud, A. Supangat, K. Sulaiman, Effective transformation of PCDTBT nanorods into nanotubes by polymer melts wetting approach. J. Saudi Chem. Soc. 21, 720–730 (2017)

    Article  Google Scholar 

  18. N. Bakar, A. Supangat, K. Sulaiman, Formation of PCDTBT: PC 71 BM p–n junction composite nanotubes via a templating method. RSC Adv. 5, 102689–102699 (2015)

    Article  Google Scholar 

  19. A. Kamarundzaman, M.S. Fakir, A. Supangat, K. Sulaiman, H. Zulfiqar, Morphological and optical properties of hierarchical tubular VOPcPhO nanoflowers. Mater. Lett. 111, 13–16 (2013)

    Article  Google Scholar 

  20. M. Doris, F. Aziz, H. Alhummiany, T. Bawazeer, N. Alsenany, A. Mahmoud, R. Zakaria, K. Sulaiman, A. Supangat, Determining the effect of centrifugal force on the desired growth and properties of PCPDTBT as p-type nanowires. Nanoscale Res. Lett. 12, 67 (2017)

    Article  Google Scholar 

  21. H. Lv, Y. Song, L. Cao, C. Yang, H. Xiao, S. Zhang, Anodization of dual-layer laminated aluminum foils: a facile route to through-hole porous anodic alumina templates. J. Alloys Compd. 614, 182–185 (2014)

    Article  Google Scholar 

  22. K.M. Chahrour, N.M. Ahmed, M. Hashim, N.G. Elfadill, M. Bououdina, Self-assembly of aligned CuO nanorod arrays using nanoporous anodic alumina template by electrodeposition on Si substrate for IR photodetectors. Sens. Actuators A 239, 209–219 (2016)

    Article  Google Scholar 

  23. K. Sharma, S. Islam, Optimization of porous anodic alumina nanostructure for ultra high sensitive humidity sensor. Sens. Actuators B 237, 443–451 (2016)

    Article  Google Scholar 

  24. Y.-S. Cheng, N.-F. Wang, Y.-Z. Tsai, J.-J. Lin, M.-P. Houng, Investigation of CuInSe 2 nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates. Appl. Surf. Sci. 396, 631–636 (2017)

    Article  Google Scholar 

  25. F. Aziz, M. Hassan Sayyad, K. Sulaiman, B.Y. Majlis, K.S. Karimov, Z. Ahmad, G. Sugandi, Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23, 9501 (2012)

    Google Scholar 

  26. F. Aziz, K. Sulaiman, K. Karimov, M. Muhammad, M.H. Sayyad, B.Y. Majlis, Investigation of optical and humidity-sensing properties of vanadyl phthalocyanine thin films. Mol. Cryst. Liq. Cryst. 566, 22–33 (2012)

    Article  Google Scholar 

  27. F. Aziz, Z. Ahmad, S.M. Abdullah, K. Sulaiman, M.H. Sayyad, Photovoltaic effect in single-junction organic solar cell fabricated using vanadyl phthalocyanine soluble derivative. Pigm. Resin Technol. 44, 26–32 (2015)

    Article  Google Scholar 

  28. F. Wahab, M. Sayyad, M. Tahir, F. Aziz, R. Khan, K.S. Karimov, Sensing properties of cobalt-phthalocyanine-based multipurpose sensor. J. Electron. Mater. 46, 2045–2052 (2017)

    Article  Google Scholar 

  29. M.I. Azmer, Z. Ahmad, K. Sulaiman, F. Touati, Morphological and structural properties of VoPcPhO:P3HT composite thin films. Mater. Lett. 164, 605–608 (2016)

    Article  Google Scholar 

  30. J. Reboun, A. Hamacek, Organic materials for humidity sensors. In: 31st International Spring Seminar on Electronics Technology, 2008. ISSE’08. IEEE, 2008, pp. 473–477

  31. M. E-Azimaraghi, Electrical properties of chloroaluminium phthalocyanine thin film sandwich devices. Indian J. Pure Appl. Phys. 45, 40–43 (2007)

    Google Scholar 

  32. K. Kato, Y. Saito, Y. Ohdaira, K. Shinbo, F. Kaneko, Evaluation of nanostructure and properties of aluminum phthalocyanine chloride thin films due to ethanol-vapor treatment. Thin Solid Films 499, 174–178 (2006)

    Article  Google Scholar 

  33. F. Aziz, N.A. Bakar, S. Bashir, H. Alhummiany, T. Bawazeer, N. Alsenany, A. Mahmoud, A. Supangat, K. Sulaiman, Effective transformation of PCDTBT nanorods into nanotubes by polymer melts wetting approach. J. Saudi Chem. Soc. 21, 720–730 (2017)

    Article  Google Scholar 

  34. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)

    Article  Google Scholar 

  35. Z. Ahmad, M.H. Sayyad, M. Saleem, K.S. Karimov, M. Shah, Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Physica E 41, 18–22 (2008)

    Article  Google Scholar 

  36. M.T.S. Chani, K.S. Karimov, F.A. Khalid, K. Raza, M.U. Farooq, Q. Zafar, Humidity sensors based on aluminum phthalocyanine chloride thin films. Physica E 45, 77–81 (2012)

    Article  Google Scholar 

  37. R. Akram, Frequency dependence of electrical parameters of an organic–inorganic hybrid composite based humidity sensor. Electronics 5, 23 (2016)

    Article  Google Scholar 

  38. L.Y. Li, Y.F. Dong, W.F. Jiang, H.F. Ji, X.J. Li, High-performance capacitive humidity sensor based on silicon nanoporous pillar array. Thin Solid Films 517, 948–951 (2008)

    Article  Google Scholar 

  39. Y. Wang, S. Park, J.T. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuator B Chem 149, 136–142 (2010)

    Article  Google Scholar 

  40. D. Li, J. Zhang, L. Shen, W. Dong, C. Feng, C. Liu, S. Ruan, Humidity sensing properties of SrTiO 3 nanospheres with high sensitivity and rapid response. RSC Adv. 5, 22879–22883 (2015)

    Article  Google Scholar 

  41. Z. Wang, C. Song, H. Yin, J. Zhang, Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires arrays at room temperature. Sens. Actuator A 235, 234–239 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the University of Malaya for project funding under the University Malaya Research Grant (RP026C-15AFR) and Ministry of Education Malaysia for project funding under the Fundamental Research Grant Scheme (FP046-2015A). This research was financially supported by Hibah Penelitian Dasar Unggulan Perguruan Tinggi No. 385/UN2.R3.1/HKP05.00/2018 from Ministry of Research, Technology and Higher Education Republic of Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fakhra Aziz, Zubair Ahmad or Azzuliani Supangat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andika, R., Aziz, F., Ahmad, Z. et al. Organic nanostructure sensing layer developed by AAO template for the application in humidity sensors. J Mater Sci: Mater Electron 30, 2382–2388 (2019). https://doi.org/10.1007/s10854-018-0511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0511-1

Navigation