Skip to main content
Log in

Electrical conductivity in biocomposites via polypyrrole coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this work was to create a biocomposite material with controllable electrical resistance for lightweight engineering made from regenerated cellulose-based fibers and a partially biobased epoxy resin. In this feasibility study viscose fabrics were coated with polypyrrole (PPy) by in situ polymerization of pyrrole (Py) and iron(III)-chloride as an oxidizing agent for the insertion of an electrical conductivity. Para-toluene sulfonic acid (pTSA) and 9,10-anthraquinone-2,6-disulfonic acid disodium salt (AQSA) were used as dopant agents to induce the conductivity. The treated viscose fabrics were incorporated into an epoxy matrix via vacuum infusion process and the resulting biocomposites were afterwards analyzed by electrical four-point measurement and three-point bending test. The surface of the coated fibers and the fracture surface after the bending test were analyzed via scanning electron microscopy (SEM). Through varying the pyrrole concentration between 3 and 6 g/l and the oxidizing/dopant agent ratio between 2:1 and 2:4, a significant reduction of electrical resistance was obtained. The lowest electrical resistance, 50 Ω/sq by the coated viscose fabrics and 7 Ω/sq by the corresponding biocomposites, was achieved by using the dopant/oxidizing ratio of 2:2. These results showed that the coating with pyrrole is a promising approach for the manufacture of electrically conductive biocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Sanjay, G.R. Arpitha, L.L. Naik, K. Gopalakrishna, B. Yogesha: Nat. Resour. (2016). https://doi.org/10.4236/nr.2016.73011

    Google Scholar 

  2. M.-P. Ho, H. Wang, J.-H. Lee, C.-K. Ho, K.-T. Lau, J. Leng, D. Hui: Composites B (2012). https://doi.org/10.1016/j.compositesb.2011.10.001

  3. J. Jun, J. Oh, D.H. Shin, S.G. Kim, J.S. Lee, W. Kim, J. Jang: ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b08344

    Google Scholar 

  4. H. Zhao, L. Hou, Y. Lu: Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.01.088

    Google Scholar 

  5. A. Esfandiari, World Appl. Sci. J. 3(3), 470–475 (2008)

    Google Scholar 

  6. M. Mičušík, M. Omastová, J. Prokeš, I. Krupa: J. Appl. Polym. Sci. (2006). https://doi.org/10.1002/app.23041

    Google Scholar 

  7. G.Z. Chen, Adv. Mater. 12, 522 (2000)

    Article  Google Scholar 

  8. Y. Zhou, X. Hu, Y. Shang, C. Hua, P. Song, X. Li, Y. Zhang, A. Cao: RSC Adv. (2016). https://doi.org/10.1039/C6RA07297F

    Google Scholar 

  9. F.M. AL-Oqla, S.M. Sapuan, T. Anwer, M. Jawaid, M.E. Hoque: Synth. Met. (2015). https://doi.org/10.1016/j.synthmet.2015.04.014

    Google Scholar 

  10. E. Håkansson, A. Amiet, A. Kaynak: Synth. Met. (2006). https://doi.org/10.1016/j.synthmet.2006.05.010

    Google Scholar 

  11. C. Ding, X. Qian, G. Yu, X. An, Cellulose (2010). https://doi.org/10.1007/s10570-010-9442-6

  12. K.K. Kanazawa, A.F. Diaz, R.H. Geiss, W.D. Gill, J.F. Kwak, J.A. Logan, J.F. Rabolt, G.B. Street: J. Chem. Soc. Chem. Commun. (1979). https://doi.org/10.1039/C39790000854

    Google Scholar 

  13. U. Salzner, J.B. Lagowski, P.G. Pickup, R.A. Poirier: Synth. Met. (1998). https://doi.org/10.1016/S0379-6779(98)00084-8

    Google Scholar 

  14. H.H. Kuhn, W.C. Kimbrell, J.E. Fowler, C.N. Barry: Synth. Met. (1993). https://doi.org/10.1016/0379-6779(93)90501-M

    Google Scholar 

  15. S. Alva, Int. J. Innov. Mech. Eng. Adv. Mater. 1, 1 (2016)

    Google Scholar 

  16. A. Diaz: J. Electroanal. Chem. (1981). https://doi.org/10.1016/0368-1874(81)87387-X

    Google Scholar 

  17. A.F. Diaz, B. Hall: IBM J. Res. Dev. (1983). https://doi.org/10.1147/rd.274.0342

    Google Scholar 

  18. A. Kaynak, R. Beltran: Polym. Int. (2003). https://doi.org/10.1002/pi.1195

    Google Scholar 

  19. J. Kim, D. Sohn, Y. Sung, E.-R. Kim: Synth. Met. (2003). https://doi.org/10.1016/S0379-6779(02)00462-9

    Google Scholar 

  20. L. Dall’Acqua, C. Tonin, R. Peila, F. Ferrero, M. Catellani: Synth. Met. (2004). https://doi.org/10.1016/j.synthmet.2004.07.005

    Google Scholar 

  21. T. Lin, L. Wang, X. Wang, A. Kaynak: Thin Solid Films (2005). https://doi.org/10.1016/j.tsf.2004.11.146

    Google Scholar 

  22. A. Varesano, L. Dall’Acqua, C. Tonin: Polym. Degrad. Stab. (2005). https://doi.org/10.1016/j.polymdegradstab.2005.01.008

    Google Scholar 

  23. A. Varesano, C. Tonin: Text. Res. J. (2008). https://doi.org/10.1177/0040517507077488

    Google Scholar 

  24. Y. Liu, X. Zhao, X. Tuo: J. Text. Inst. (2016). https://doi.org/10.1080/00405000.2016.1193981

    Google Scholar 

  25. Y. Zhang, X. Fan, Q. Wang: J. Nat. Fibers (2017). https://doi.org/10.1080/15440478.2017.1302387

    Google Scholar 

Download references

Acknowledgements

This study was carried out in the scope of the project “Functionally-integrated, three-dimensional variable production of bio-hybrid components with maximum bio-based content (ProBio)”. We appreciate the financial support provided by the Ministry for Science and Culture of the State of Lower Saxony (MWK) for the implementation of this extensive project and especially this study. Additionally, the authors want to thank the workgroup of Prof. Bigall of the Institute of Physical Chemistry and Electrochemistry of the Leibniz Universität Hannover for the possibility for perform electrical resistance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Vellguth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vellguth, N., Shamsuyeva, M., Kroll, S. et al. Electrical conductivity in biocomposites via polypyrrole coating. J Mater Sci: Mater Electron 30, 2373–2381 (2019). https://doi.org/10.1007/s10854-018-0510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0510-2

Navigation