Skip to main content
Log in

Cu doped ZnO hierarchical nanostructures: morphological evolution and photocatalytic property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper doped ZnO hierarchical nanostructures have been synthesized with a facile solution route at room temperature. Structural properties of the as-synthesized nanostructures have been studied X-ray diffraction, field emission scanning electron microscopy with energy dispersive. Meanwhile, light-absorption properties were studied with UV–Vis absorption spectroscopy. Photocatalytic performance of Cu-doped ZnO hierarchical nanostructures were evaluated by the light-driven degradation of methylene blue. The results indicated that Cu doping lead to the augment of average crystallite size of ZnO crystals. Moreover, morphological evolution of ZnO nanostructures was found with the addition of Cu ions. The photocatalytic test showed that there is an optimum Cu doping concentration which results in the enhancement of photocatalytic performance of Cu doped ZnO hierarchical nanostructures, compared with pristine ZnO. A novel and reasonable mechanism was proposed. It is believed that the enhanced photocatalytic performance of Cu doped ZnO hierarchical nanostructures can be attributed to the formation of acceptor level (Cu2+–Cu+) in the midgap of ZnO, which improved the utilization of light and separation efficiency of photogenerated electron hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Role of defects in tailoring structural, electrical and optical properties of ZnO. Prog. Mater. Sci. 54, 89–136 (2009)

    Article  Google Scholar 

  2. A.B. Djurišić, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications. J. Mater. Chem. 22, 6526–6535 (2012)

    Article  Google Scholar 

  3. J.C. Fan, K. Sreekanth, Z. Xie, S. Chang, K.V. Rao, p-Type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)

    Article  Google Scholar 

  4. S. Maiti, S. Pal, K.K. Chattopadhyay, Recent advances in low temperature, solution processed morphology tailored ZnO nanoarchitectures for electron emission and photocatalysis applications. CrystEngComm 17, 9264–9295 (2015)

    Article  Google Scholar 

  5. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821 (2003)

    Article  Google Scholar 

  6. S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Article  Google Scholar 

  7. A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)

    Article  Google Scholar 

  8. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)

    Article  Google Scholar 

  9. Y. Wang, Q. Ma, H. Jia, Z. Wang, One-step solution synthesis and formation mechanism of flower-like ZnO and its structural and optical characterization. Ceram. Int. 42, 10751–10757 (2016)

    Article  Google Scholar 

  10. S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, C.R. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J. Am. Chem. Soc. 135, 7394–7397 (2013)

    Article  Google Scholar 

  11. K.C. Pradel, W. Wu, Y. Zhou, X. Wen, Y. Ding, Z.L. Wang, Piezotronic effect in solution-grown p-type ZnO nanowires and films. Nano Lett. 13, 2647–2653 (2013)

    Article  Google Scholar 

  12. X. Luo, Z. Lou, L. Wang, X. Zheng, T. Zhang, Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors. New J. Chem. 38, 84–89 (2014)

    Article  Google Scholar 

  13. Y. Su, J. Li, Z. Luo, B. Lu, P. Li, Microstructure, growth process and enhanced photocatalytic activity of flower-like ZnO particles. RSC Adv. 6, 7403–7408 (2016)

    Article  Google Scholar 

  14. J. Zhang, P. Liu, Y. Zhang, G. Xu, Z. Lu, X. Wang, Y. Wang, L. Yang, X. Tao, H. Wang, Enhanced performance of nano-Bi 2 WO 6-graphene as pseudocapacitor electrodes by charge transfer channel. Sci. Rep. 5, 8624 (2015)

    Article  Google Scholar 

  15. Q. Ma, Y. Wang, J. Kong, H. Jia, Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures. Ceram. Int. 42, 2854–2860 (2016)

    Article  Google Scholar 

  16. J. Zhang, B. Wu, L. Huang, P. Liu, X. Wang, Z. Lu, G. Xu, E. Zhang, H. Wang, Z. Kong, Anatase nano-TiO2 with exposed curved surface for high photocatalytic activity. J. Alloy. Compd. 661, 441–447 (2016)

    Article  Google Scholar 

  17. J. Yang, H. Jia, X. Lv, Y. Wang, Facile preparation of urchin-like ZnO nanostructures and their photocatalytic performance. Ceram. Int. 42, 12409–12413 (2016)

    Article  Google Scholar 

  18. M. Ahmad, E. Ahmed, Z. Hong, X. Jiao, T. Abbas, N. Khalid, Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Appl. Surf. Sci. 285, 702–712 (2013)

    Article  Google Scholar 

  19. F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 101, 309–316 (2016)

    Article  Google Scholar 

  20. L. Shen, R. Wu, H. Pan, G. Peng, M. Yang, Z. Sha, Y. Feng, Mechanism of ferromagnetism in nitrogen-doped ZnO: first-principle calculations. Phys. Rev. B 78, 073306 (2008)

    Article  Google Scholar 

  21. G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008)

    Article  Google Scholar 

  22. C. Xia, F. Wang, C. Hu, Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. J. Alloy. Compd. 589, 604–608 (2014)

    Article  Google Scholar 

  23. G. Liang, L. Hu, W. Feng, G. Li, A. Jing, Enhanced photocatalytic performance of ferromagnetic ZnO: Cu hierarchical microstructures. Appl. Surf. Sci. 296, 158–162 (2014)

    Article  Google Scholar 

  24. R.C. Pawar, D.-H. Choi, J.-S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015)

    Article  Google Scholar 

  25. S. Kuriakose, B. Satpati, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)

    Article  Google Scholar 

  26. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, Cu-doped ZnO nanoneedles and nanonails: morphological evolution and physical properties. J. Phys. Chem. C 112, 9579–9585 (2008)

    Article  Google Scholar 

  27. G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology—function relationship of ZnO: polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 112, 11859–11864 (2008)

    Article  Google Scholar 

  28. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    Article  Google Scholar 

  29. F. Zhang, X.-W. He, W.-Y. Li, Y.-K. Zhang, One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells. J. Mater. Chem. 22, 22250–22257 (2012)

    Article  Google Scholar 

  30. R. Xie, X. Peng, Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 131, 10645–10651 (2009)

    Article  Google Scholar 

  31. B.B. Srivastava, S. Jana, N. Pradhan, Doping Cu in semiconductor nanocrystals: some old and some new physical insights. J. Am. Chem. Soc. 133, 1007–1015 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Y. Q. Wang designed and directed the project. Q. Ma and X. D. Yang carried out the experiments, performed measurements and carried out data analysis with help from X. Z. Lv and H. X. Jia, and Y. Q. Wang wrote the manuscript. All authors contributed to discussions. The project was supported by the Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Yang, X., Lv, X. et al. Cu doped ZnO hierarchical nanostructures: morphological evolution and photocatalytic property. J Mater Sci: Mater Electron 30, 2309–2315 (2019). https://doi.org/10.1007/s10854-018-0503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0503-1

Navigation