Skip to main content
Log in

Side chain triphenylamine-based conjugated polymers for the preparation of efficient heterojunction solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of novel benzothiadiazole based triphenylamine polymers containing different electron-rich side chains (dithienosilole, dithienopyrrole, dithieno-cyclopentadiene derivatives) have been prepared and their photoelectric properties explored. These polymers have been characterized using UV–Vis absorption and fluorescence spectroscopy and their photo-electrochemical properties characterized using cyclic voltammetry. These new polymers exhibit high thermal decomposition temperatures and broad absorption spectra that enable them to absorb light across the entire visible region. The UV absorption response range electron of these polymers could be tuned by modifying their electron donating units, with the best polymer found to exhibit a long fluorescent lifetime. An P3:PC71BM device containing dithienocyclopentadiene electron donating side-chains was shown to give 3.6% photoelectric conversion efficiency for a high short-circuit current of 14.25 mA/cm2. The fluorescence intensity of this copolymer decayed rapidly, implying that effective charge transfer processes were occurring at its interface, which were associated with a relatively high short circuit current. This work clearly demonstrates that use of an appropriate electron donor unit can effectively broaden the polymers spectroscopic response range, thus increasing the rate of carrier transport at the interface, which leads to improved photoelectric conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Ye, Y. Xiong, Q. Zhang, S. Li, C. Wang, Z. Jiang, J. Hou, W. You, H. Ade, Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 30(8), 1705485 (2018)

    Article  Google Scholar 

  2. F. Zhao, C. Wang, X. Zhan, Morphology control in organic solar cells. Adv. Energy Mater. 8, 1703147 (2018)

    Article  Google Scholar 

  3. G. Han, Y. Yi, Z. Shuai, From molecular packing structures to electronic processes: theoretical simulations for organic solar cells. Adv. Energy Mater. 8, 1702743 (2018)

    Article  Google Scholar 

  4. L. Ye, B.A. Collins, X. Jiao, J. Zhao, H. Yan, H. Ade, Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation. Adv. Energy Mater. 8, 1703058 (2018)

    Article  Google Scholar 

  5. K. Zhang, B. Fan, R. Xia, X. Liu, Z. Hu, H. Gu, S. Liu, H.L. Yip, L. Ying, F. Huang, Highly efficient tandem organic solar cell enabled by environmentally friendly solvent processed polymeric interconnecting layer. Adv. Energy Mater. 8, 1703180 (2018)

    Article  Google Scholar 

  6. S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 38, 1324–1338 (2007)

    Article  Google Scholar 

  7. D. Xiao, Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. 62, 1562–1564 (2017)

    Article  Google Scholar 

  8. Y. Cui, H.F. Yao, C.Y. Yang, S.Q. Zhang, J.H. Hou, Organic solar cells with an efficiency approaching 15%. Acta Polym. Sin. 2, 223–230 (2018)

    Google Scholar 

  9. Z. Ding, Z. Miao, Z. Xie, J. Liu, Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. J. Mater. Chem. A 4(7), 2413–2418 (2016)

    Article  Google Scholar 

  10. J.A. Amonoo, A. Li, G.E. Purdum, M.E. Sykes, B. Huang, An all-conjugated gradient copolymer approach for morphological control of polymer solar cells. J. Mater. Chem. A 3(40), 20174–20184 (2015)

    Article  Google Scholar 

  11. D. Liu, B. Yang, B. Jang, B. Xu, S. Zhang, C. He, Y.W. Han, J. Hou, Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 10(2), 546–551 (2017)

    Article  Google Scholar 

  12. D. Yang, Z. Guan, Y. Lin, H. Yan, Q. Wei, Z. Lu, J. Yu, Novel high-performance photovoltaic D–A conjugated polymers bearing 1,2-squaraine moieties as electron-deficient units. Sol. Energy Mater. Sol. Cells 105(105), 220–228 (2012)

    Article  Google Scholar 

  13. H. Shi, L. Du, W. Xiong, M. Dai, W.K. Chan, D.L. Phillips, Study of electronic interactions and photo-induced electron transfer dynamics in a metalloconjugated polymer–single-walled carbon nanotube hybrid by ultrafast transient absorption spectroscopy. J. Mater. Chem. A 5, 18527–18534 (2017)

    Article  Google Scholar 

  14. Y. Qin, S. Liu, H. Gu, W. Dai, X. Luo, Highly flattened donor-acceptor polymers based on fluoride-substituent acceptors for efficient heterojunction solar cells. Sol. Energy 166, 450–457 (2018)

    Article  Google Scholar 

  15. M. Zhang, X. Guo, Y. Li, Synthesis and characterization of a copolymer based on thiazolothiazole and dithienosilole for polymer solar cells. Adv. Energy Mater. 1(4), 557–560 (2011)

    Article  Google Scholar 

  16. Z. Jing, Z. Yao, Y. Cai, Y. Lin, M. Xu, R. Li, Z. Min, X. Dong, W. Peng, Conjugated linker correlated energetics and kinetics in dithienopyrrole dye-sensitized solar cells. Energy Environ. Sci. 6(5), 1604–1614 (2013)

    Article  Google Scholar 

  17. I. Etxebarria, J. Ajuria, R. Pacios, Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review. J. Photon. Energy 5(1), 057214 (2015)

    Article  Google Scholar 

  18. J.T. Bloking, X. Han, A.T. Higgs, J.P. Kastrop, L. Pandey, J.E. Norton, C. Risko, C.E. Chen, J.L. Brédas, M.D. Mcgehee, Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors. Chem. Mater. 23(24), 5484–5490 (2016)

    Article  Google Scholar 

  19. A.K. Jin, E. Lim, K.K. Lee, S. Lee, S.H. Kim, A benzothiadiazole-based oligothiophene for vacuum-deposited organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 94(12), 2057–2063 (2010)

    Article  Google Scholar 

  20. R.Y. Lin, C.P. Lee, Y.C. Chen, J.D. Peng, T.C. Chu, H.H. Chou, H.M. Yang, J.T. Lin, K.C. Ho, Benzothiadiazole-containing donor-acceptor-acceptor type organic sensitizers for solar cells with ZnO photoanodes. Chem. Commun. 48(99), 12071 (2012)

    Article  Google Scholar 

  21. C. Rodriguez-Seco, S. Biswas, G.D. Sharma, A. Vidal-Ferran, E. Palomares, Benzothiadiazole substituted semiconductor molecules for organic solar cells: the effect of the solvent annealing over the thin film hole mobility values. J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.8b0084

    Google Scholar 

  22. P. Agarwala, D. Kabra, A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5(4), 1348–1373 (2016)

    Article  Google Scholar 

  23. S.P. Singh, M.S. Roy, K.R.J. Thomas, S. Balaiah, K. Bhanuprakash, G.D. Sharma, New triphenylamine (TPA) based organic dyes with different number of anchoring groups for dye-sensitized solar cells. J. Phys. Chem. C 116(9), 5941–5950 (2012)

    Article  Google Scholar 

  24. K. Sulaiman, M.S. Fakir, Electrical conduction and photovoltaic effects of TPA-derivative solar cells. Thin Solid Films 519(15), 5219–5222 (2011)

    Article  Google Scholar 

  25. H. Shang, K. Jiang, X. Zhan, An oligothiophene dye with triphenylamine as side chains for efficient dye-sensitized solar cells. Org. Electron. 13(11), 2395–2400 (2012)

    Article  Google Scholar 

  26. J. Du, E. Xu, H. Zhong, F. Yu, C. Liu, H. Wu, D. Zeng, S. Ren, J. Sun, Y. Liu, Alkyl side chain driven tunable red–yellow–green emission: Investigation on the new π-conjugated polymers comprising of 2,7-carbazole unit and 2,1,3-benzo-thiadiazole units with different side chains. J. Polym. Sci. A 46(4), 1376–1387 (2008)

    Article  Google Scholar 

  27. Y. Lin, Y. Chen, T. Ye, D. Ma, Y. Li, Carbazole-modified blue light-emitting copolymers with the backbones integrated by diphenyloxadiazole, fluorene, and triphenylamine. Eur. Polym. J. 48(2), 416–424 (2012)

    Article  Google Scholar 

  28. Y. Zhi, B. Zhao, R. Cao, Y. Xu, J. Wang, D. Dang, C. Gao, L. Meng, Triphenylamine cored electron-donors for solution-processed organic solar cells: from tri-armed molecules to tetra-armed molecules. Dyes Pigm. 153, 291–299 (2018)

    Article  Google Scholar 

  29. C. Goh, R.J. Kline, M.D. Mcgehee, E.N. Kadnikova, J.M.J. Fréchet, Molecular-weight-dependent mobilities in regioregular poly (3-hexyl-thiophene) diodes. Appl. Phys. Lett. 86, 122110 (2005)

    Article  Google Scholar 

  30. Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, Y. Chen, High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv. Mater. 23, 5387 (2011)

    Article  Google Scholar 

  31. G. Zhao, Y. He, Z. Xu, J. Hou, M. Zhang, J. Min, H.Y. Chen, M. Ye, Z. Hong, Y. Yang, Effect of carbon chain length in the substituent of PCBM-like molecules on their photovoltaic properties. Adv. Funct. Mater. 20, 1480 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (51663018), Outstanding Youth Funds of Jiangxi Province (20171BCB23056), and Natural Science Foundation of Jiangxi Province (20161BBG70043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuancheng Qin or Xubiao Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Qin, Y., Lin, S. et al. Side chain triphenylamine-based conjugated polymers for the preparation of efficient heterojunction solar cells. J Mater Sci: Mater Electron 30, 2235–2245 (2019). https://doi.org/10.1007/s10854-018-0495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0495-x

Navigation