Skip to main content
Log in

Optical, dielectric properties and thermal analysis on sodium sulfanilate dihydrate nonlinear optical single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nonlinear optical sodium sulfanilate dihydrate (SSD) single crystal was grown by slow evaporation solution method at ambient temperature. Unit cell parameters were elucidated with the study of single crystal X-ray diffraction. Fourier transform infrared spectroscopic analyses were performed to indentify a variety of functional groups present in the grown SSD crystal. The level of optical transmittance of the grown SSD crystal was investigated by UV–Vis–NIR spectral analysis. The lower cut off wavelength of the grown crystal was observed at 243 nm and the band gap energy is found to be 5.23 eV. The spectral study of photoluminescence was carried out for the grown crystal which shows a sharp emission peak at 485 nm resulting blue–green emission that is suitable for the optical communication applications. Mechanical strength was measured by utilizing Vickers microhardness test and the value of n is found to be 2.25 asserting that the crystal belongs to soft material category. The dielectric properties were studied as a function of frequency at various temperatures and also the grown SSD crystal has been correlated with electro-optic properties. Thermogravimetric analysis was undertaken by a thermal analyzer with the temperature starting from 30 to 800 °C and TGA/DTA results show that the crystal has good thermal stability and useful for laser applications. Etching analysis also was performed for the grown SSD single crystal proving that it has good crystalline nature with fewer defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1. (Academic Press, Orlando, 1987)

    Google Scholar 

  2. Y. Zhang, H. Li, B. Xi, Y. Che, J. Zheng, Mater. Chem. Phys. 108, 192 (2008)

    Article  Google Scholar 

  3. H. Yadav, N. Sinha, B. Kumar, Mater. Res. Bull. 64, 194–199 (2015)

    Article  Google Scholar 

  4. M.H. Jiang, Q. Fang, Adv. Mater. 11, 1147–1151 (1999)

    Article  Google Scholar 

  5. M.D. Aggarwal, J. Choi, W.S. Wang, K. Bhat, R.B. Lal, A.D. Shields, B.G. Penn, D.V. Frazier, J. Cryst. Growth 204, 179–182 (1999)

    Article  Google Scholar 

  6. S.S. Hussaini, N.R. Dhumane, V.G. Dongre, M.D. Shirsat, Mater. Sci. Pol. 27, 365–372 (2009)

    Google Scholar 

  7. S.A. Martin Britto Dhas, G. Bhagavannarayana, S. Natarajan, Open Crystallogr. J. 1, 42–45 (2008)

    Article  Google Scholar 

  8. P. Mythili, T. Kanagasekaran, S.N. Sharma, R. Gopalakrishnan, J. Cryst. Growth 306, 344–350 (2007)

    Article  Google Scholar 

  9. M. Senthilpandiyan, P. Ramasamy, Mater. Chem. Phys 132, 1019–1028 (2012)

    Article  Google Scholar 

  10. S. AnieRoshan, C. Joseph, M.A. Ittyachen, Mater. Lett. 49, 299–302 (2001)

    Article  Google Scholar 

  11. N.M. Ravindra, R.B. Bharadwaj, K. SunilKumar, V.K. Srivastava, Infrared Phys. 21, 369–381 (1981)

    Article  Google Scholar 

  12. N.M. Ravindra, V.K. Srivastava, Infrared Phys. 20, 67–69 (1980)

    Article  Google Scholar 

  13. S. Suresh, Optik 125, 1223–1226 (2014)

    Article  Google Scholar 

  14. J. Mohan, Organic Spectroscopy Principles and Applications (CRC Press, Boca Raton, 2000)

    Google Scholar 

  15. G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley, New York, 2001)

    Google Scholar 

  16. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978)

    Google Scholar 

  17. N. Tigau, V. Ciupinaa, G. Prodana, G.I. Rusub, C. Gheorghies, E. Vasilec, J. Optoelectron. Adv. Mater. 6, 211–217 (2004)

    Google Scholar 

  18. A.K. Chawla, D. Kaur, R. Chandra, Opt. Mater. 29, 995–998 (2007)

    Article  Google Scholar 

  19. D.D.O. Eya, A.J. Ekpunobi, C.E. Okeke, Acad. Open Internet J. 17, 1311–4360 (2006)

    Google Scholar 

  20. R.C. Dhas, J. Charles Bennet, F.D. Gnanam, J. Cryst. Growth 137, 295–298 (1994)

    Article  Google Scholar 

  21. B. Narasimha, R.N. Choudhary, K.V. Rao, Mater. Sci. 23, 1416–1418 (1988)

    Article  Google Scholar 

  22. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006)

    Google Scholar 

  23. M. Bass, Hand Book of Optics, vol. IV. (Tata McGraw-Hill Companies, Inc., New York, 2010)

    Google Scholar 

  24. S. Mukerji, T. Kar, Cryst. Res. Technol. 34, 1323–1328 (1999)

    Article  Google Scholar 

  25. E. Meyer, Phys. Z. 9, 66 (1908)

    Google Scholar 

  26. E.M. Onitsch, Mikroskopie 2, 131–151 (1947)

    Google Scholar 

  27. M. Hanneman, Manchu 23, 135 (1941)

    Google Scholar 

  28. J.H. Joshi, G.M. Joshi, M.J. Joshi, H.O. Jethva, K.D. Parikh, New J. Chem. 42, 17227–17249 (2018)

    Article  Google Scholar 

  29. S.K. Aroa, V. Patel, B. Amin, A. Kothari, Bull. Mater. Sci. 27, 141 (2004)

    Article  Google Scholar 

  30. C.P. Smith, Dielectric Behavior and Structure (McGraw Hill, New York, 1965)

    Google Scholar 

  31. S. Sohma, H. Takashashi, T. Taniuchi, H. Ito, Chem. Phys. 245, 359 (1999)

    Article  Google Scholar 

  32. K.V. Rao, A. Smakula, J. Appl. Phys. 37, 319 (1966)

    Article  Google Scholar 

  33. D.K. Pradhan, B.K. Samantary, R.N.P. Chaudhary, A.K. Thakur, Mater. Sci. Eng. B 116, 7 (2005)

    Article  Google Scholar 

  34. J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)

    Article  Google Scholar 

  35. D. Vladikova, J.A. Kilner, S.J. Skinner, G. Raikova, Z. Stoynov, Electrochim. Acta 51, 1611–1621 (2006)

    Article  Google Scholar 

  36. B.T. Hatton, K. Landskron, W.J. Hunks, Mater. Today 9(3), 22–31 (2006)

    Article  Google Scholar 

  37. C. Balarew, R. Dehlew, J. Solid State Chem. 55(1), 1–6 (1984)

    Article  Google Scholar 

  38. A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    Article  Google Scholar 

  39. K. Parikh, D. Dave, B. Parekh, M. Joshi, Bull. Mater. Sci. 30(2), 105 (2007)

    Article  Google Scholar 

  40. K. Parikh, D. Dave, M. Joshi, Mod. Phys. Lett. Bull. 23(12), 1589 (2009)

    Article  Google Scholar 

  41. K. Parikh, D. Dave, B. Parekh, M. Joshi, Cryst. Res. Technol. 45(6), 603 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirupathy, J., Dhas, S.S.J., Jose, M. et al. Optical, dielectric properties and thermal analysis on sodium sulfanilate dihydrate nonlinear optical single crystal. J Mater Sci: Mater Electron 30, 2224–2234 (2019). https://doi.org/10.1007/s10854-018-0493-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0493-z

Navigation