Skip to main content
Log in

Microstructure and ferroelectric properties of (Ca1−xSrx)3(Ti1−yMny)2O7 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Ca1−xSrx)3(Ti1−yMny)2O7 (CSTMO) ceramics with hybrid improper ferroelectricity were prepared by conventional solid-state reaction method. Effect of Sr2+ and Mn4+ contents on microstructure, dielectric and ferroelectric properties have been systematically investigated. The XRD results show that CSTMO ceramics is single phase with orthorhombic structure. The lattice constants and average grain size increase with the increasing of Sr2+ content and decrease with the increasing of Mn4+ content. The introduction of Mn4+ deteriorates the densification of CSTMO ceramics to some extent, and the substitution of Sr2+ with higher content can improve the densification by promoting a rapid interdiffusion movement via grain-boundary. (Ca0.8Sr0.2)3(Ti0.9Mn0.1)2O7 ceramics present the highest dielectric constant and dielectric loss, while the dielectric loss of (Ca0.8Sr0.2)3(Ti0.95Mn0.05)2O7 ceramics has a significant reduction. The leakage current of CSTMO ceramics decreases with the increasing of Sr2+ and Mn4+ content. The leakage behavior suggests that the Ohmic conduction and Schottky emission dominate the leakage current of CSTMO ceramics. Moreover, the remnant polarization decreases with the increasing of Sr2+ because of its suppression for the rotating and tilting angle (aac+) of oxygen octahedron. And the electrical polarization decreases with the increasing of Mn4+ content due to the instability of MnO6 rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Matsuo, Y. Kitanaka, R. Inoue, Y. Noguchi, M. Miyayama, Jpn. J. Appl. Phys. 54, 10NA03 (2015)

    Article  Google Scholar 

  2. N. Lee, C. Vecchini, Y.J. Choi, L.C. Chapon, A. Bombardi, P.G. Radaelli, S.W. Cheong, Phys. Rev. Lett. 110, 137203 (2013)

    Article  Google Scholar 

  3. J.M. Hu, T. Nan, N.X. Sun, L.Q. Chen, MRS Bull. 40, 728 (2015)

    Article  Google Scholar 

  4. C.J. Fennie, K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2006)

    Article  Google Scholar 

  5. C.J. Fennie, Phys. Rev. Lett. 100, 167203 (2008)

    Article  Google Scholar 

  6. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.M. Triscone, P. Ghosez, Nature 452, 732 (2008)

    Article  Google Scholar 

  7. N.A. Benedek, C.J. Fennie, Phys. Rev. Lett. 106, 107204 (2011)

    Article  Google Scholar 

  8. H.J. Zhao, W. Ren, Y.R. Yang, J. Iniguez, X.M. Chen, L. Bellaiche, Nat. Commun. 5, 4021 (2014)

    Article  Google Scholar 

  9. A.T. Mulder, N.A. Benedek, J.M. Rondinelli, C.J. Fennie, Adv. Funct. Mater. 23, 4810 (2013)

    Google Scholar 

  10. W. Zhu, L. Pi, Y. Huang, S. Tan, Y. Zhang, Appl. Phys. Lett. 101, 192407 (2012)

    Article  Google Scholar 

  11. B. Gao, F.T. Huang, Y.Z. Wang, J.W. Kim, L.H. Wang, S.J. Lim, S.W. Cheong, Appl. Phys. Lett. 110, 222906 (2017)

    Article  Google Scholar 

  12. Y.S. Oh, X. Luo, F.T. Huang, Y.Z. Wang, S.W. Cheong, Nat. Mater. 14, 407 (2015)

    Article  Google Scholar 

  13. X.Q. Liu, J.W. Wu, X.X. Shi, H.J. Zhao, H.Y. Zhou, R.H. Qiu, W.Q. Zhang, X.M. Chen, Appl. Phys. Lett. 106, 202903 (2015)

    Article  Google Scholar 

  14. F. Ye, J.C. Wang, J.M. Sheng, C. Hoffmann, T. Gu, H.J. Xiang, W. Tian, J.J. Molaison, A.M. dos Santos, M. Matsuda, B.C. Chakoumakos, J.A. Fernandez-Baca, X. Tong, B. Gao, J.W. Kim, S.W. Cheong, Phys. Rev. B 97, 041112 (2018) R)

    Article  Google Scholar 

  15. Y.Z. Wang, F.T. Huang, X. Luo, B. Gao, S.W. Cheong, Adv. Mater. 29, 1601288 (2017)

    Article  Google Scholar 

  16. G.J. Li, X.Q. Liu, J.J. Lu, H.Y. Zhu, X.M. Chen, J. Appl. Phys. 123, 014101 (2018)

    Article  Google Scholar 

  17. K. Kurushima, W. Yoshimoto, Y. Ishii, S.W. Cheong, S. Mori, Jpn. J. Appl. Phys. 56, 10PB02 (2017)

    Article  Google Scholar 

  18. M.H. Lee, C.P. Chang, F.T. Huang, G.Y. Guo, B. Gao, C.H. Chen, S.W. Cheong, M.W. Chu, Phys. Rev. Lett. 119, 157601 (2017)

    Article  Google Scholar 

  19. F.T. Huang, B. Gao, J.W. Kim, X. Luo, Y.Z. Wang, M.W. Chu, C.K. Chang, H.S. Sheu, S.W. Cheong, NPJ Quantum Mater. 1, 16017 (2016)

    Article  Google Scholar 

  20. J.C. Sczancoski, L.S. Cavalcante, T. Badapanda, S.K. Rout, S. Panigrahi, V.R. Mastelaro, J.A. Varela, M. Siu Li, E. Longo, Solid State Sci. 12, 1160 (2010)

    Article  Google Scholar 

  21. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinha, E. Longo, Mater. Chem. Phys. 121, 147 (2010)

    Article  Google Scholar 

  22. T. Fakhrul, R. Mahbub, N. Chowdhury, Q.D.M. Khosru, A. Sharif, J. Alloys Compd. 622, 471 (2015)

    Article  Google Scholar 

  23. A. Khalid, S. Atiq, S.M. Ramay, A. Mahmood, G.M. Mustafa, S. Riaz, S. Naseem, J. Mater. Sci.: Mater. Electron. 27, 8966 (2016)

    Google Scholar 

  24. F.A. Kröger, H.J. Vink, ed. by F Seitz, D Turnbull, Solid State Physics, vol. 3 (Academic Press, New York, 1956), p. 307

    Google Scholar 

  25. V.S. Marques, L.S. Cavalcante, J.C. Sczancoski, E.C. Paris, J.M.C. Teixeira, J.A. Varela, F.S. De Vicente, M.R. Joya, P.S. Pizani, M. Siu Li, M.R.M.C. Santos, E. Longo, Spectrochim. Acta A. 74, 1050 (2009)

    Article  Google Scholar 

  26. T.Y. Lei, W. Cai, C.L. Fu, H. Ren, Y. Zhang, Y.Y. Sun, G.D. Li, J. Mater. Sci.: Mater. Electron. 26, 9495 (2015)

    Google Scholar 

  27. B. Yotburut, P. Thongbai, T. Yamwong, S. Maensiri, Ceram. Int. 43, 5616 (2017)

    Article  Google Scholar 

  28. K.H. Chen, M.C. Kao, S.J. Huang, C.Y. Li, C.M. Cheng, S. Wu, Z.H. Wu, Ceram. Int. 43, S253 (2017)

    Article  Google Scholar 

  29. V.K. Srivastava, Phys. Rev. Lett. 30, 1046 (1973)

    Article  Google Scholar 

  30. J.F. Scott, J. Phys. Condens. Matter 20, 021001 (2007)

    Article  Google Scholar 

  31. A.B. Harris, Phys. Rev. B 84, 064116 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and People’s Livelihood Guarantee of Chongqing (Grant No. cstc2017shmsA0192), the Program for Innovation Teams in University of Chongqing (Grant No. CXTDX201601032) and the Chongqing Research Program of Basic Research and Frontier Technology (Grant Nos. CSTC2018jcyjAX0416, CSTC2016jcyjA0175, CSTC2016jcyjA0349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cai, W., Fu, C. et al. Microstructure and ferroelectric properties of (Ca1−xSrx)3(Ti1−yMny)2O7 ceramics. J Mater Sci: Mater Electron 30, 2177–2185 (2019). https://doi.org/10.1007/s10854-018-0489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0489-8

Navigation