Construction of CuO@Ni–Fe layered double hydroxide hierarchical core–shell nanorods arrays on copper foam for high-performance supercapacitors

  • Guolong Liu
  • Xu He
  • Dong HeEmail author
  • Bingyi Cui
  • Li Zhu
  • Hui Suo
  • Chun Zhao


In this work, the unique hierarchical core–shell nanorods arrays consisting of Ni–Fe layered double hydroxide (LDH) nanosheets shell and CuO nanorods core have been designed and synthesized on the copper foam substrate by two-step in situ electrochemical processes. The resulting CuO@Ni–Fe LDH electrodes can be directly used as binder-free electrodes for high performance supercapacitors, and the prepared samples revealed an improved specific capacitance (2.682 F cm−2), good coulombic efficiency of 82.7%, and long cycling lifespans. The unique structures can provide massive active sites for redox reactions, shorten the diffusion pathway for ions and improve the mechanical strength of the sample. Therefore, the CuO@Ni–Fe LDH electrode has a good potential for high performance energy storage devices.



This work is financially supported by the National Natural Science Foundation of China (Grant No. 61474056), Jilin Provincial Science and Technology Development Foundation (Grant No. 20180201011GX), and The China Scholarship Council (CSC) State Scholarship Fund International Clean Energy Talent Project (Grant No. [2018]5046).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_479_MOESM1_ESM.docx (1018 kb)
Supplementary material 1 (DOCX 1017 KB)


  1. 1.
    A. Burke, J. Power Sources 91, 37 (2000)CrossRefGoogle Scholar
  2. 2.
    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, H. Feng, X. Wu et al., Int. J. Hydrog. Energy 34, 4889 (2009)CrossRefGoogle Scholar
  4. 4.
    D. He, S. Xing, B. Sun, H. Cai, H. Suo, C. Zhao, Electrochim. Acta 210, 639 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219 (2014)CrossRefGoogle Scholar
  6. 6.
    K.A. Owusu, L. Qu, J. Li et al., Nat. Commun. 8, 14264 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Dong, C. Xu, Y. Li et al., J. Mater. Chem. A 4, 4659 (2016)CrossRefGoogle Scholar
  8. 8.
    D. He, G. Wang, G. Liu, H. Suo, C. Zhao, Dalton Trans. 46, 3318 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Zhao, F. Ren, X. Xue, W. Zheng, X. Wang, L. Chang, J. Electroanal. Chem. 782, 98 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Sun, Y. Huang, C. Fu et al., Nano Energy 27, 230 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Cho, M. Kim, J. Jang, ACS Appl. Mater. Interfaces 7, 10213 (2015)CrossRefGoogle Scholar
  12. 12.
    D. He, G. Liu, A. Pang, Y. Jiang, H. Suo, C. Zhao, Dalton Trans. 46, 1857 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Lv, H. Suo, J. Wang, Y. Wang, C. Zhao, S. Xing, Colloids Surf. A 396, 292 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Gao, L.L. Zhang, S.Y. Jia, X.C. Liu, Y.H. Wang, S.X. Xing, Electrochim. Acta 203, 59 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Fu, A. Mahadevegowda, P.S. Grant, J. Mater. Chem. A 4, 2597 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Liu, C. Zhao, T. Liu, D. He, H. Suo, Mater. Lett. 220, 78 (2018)CrossRefGoogle Scholar
  17. 17.
    D. He, J. Wan, H. Suo, C. Zhao, Mater. Lett. 185, 165 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Wan, A. Pang, D. He, J. Liu, H. Suo, C. Zhao, J. Mater. Sci.: Mater. Electron. 29, 2660 (2017)Google Scholar
  19. 19.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  20. 20.
    F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Li, H. Chen, X.Y. Liu et al., J. Mater. Chem. A 4, 2096 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Cai, H. Huang, D. Wang et al., ACS Appl. Mater. Interfaces 6, 15905 (2014)CrossRefGoogle Scholar
  23. 23.
    G.C. Li, P.F. Liu, R. Liu et al., Dalton Trans. 45, 13311 (2016)CrossRefGoogle Scholar
  24. 24.
    F. Ning, M. Shao, C. Zhang, S. Xu, M. Wei, X. Duan, Nano Energy 7, 134 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.P. Xu, P.S. Braterman, Appl. Clay Sci. 48, 235 (2010)CrossRefGoogle Scholar
  26. 26.
    V. Rives, M.A. Ulibarri, Coord. Chem Rev 181, 61 (1999)CrossRefGoogle Scholar
  27. 27.
    H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24, 934 (2014)CrossRefGoogle Scholar
  28. 28.
    W. Quan, C.H. Jiang, S.T. Wang et al., Electrochim. Acta 247, 1072 (2017)CrossRefGoogle Scholar
  29. 29.
    L.L. Liu, T. Guan, L. Fang et al., J. Alloys Compd. 763, 926 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Xin Zhang, F. Li, M. Huang, Mater. Lett. 112, 203 (2013)CrossRefGoogle Scholar
  31. 31.
    D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Power Sources 242, 687 (2013)CrossRefGoogle Scholar
  32. 32.
    Q. Wang, D.O. ‘Hare, Chem. Rev. 112, 4124 (2012)CrossRefGoogle Scholar
  33. 33.
    Z. Li, M. Shao, H. An et al., Chem. Sci. 6, 6624 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Gong, Y. Li, H. Wang et al., J. Am. Chem. Soc. 135, 8452 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Dai, L. Zhao, H. Gao et al., ACS Appl. Mater. Interfaces 9, 8919 (2017)CrossRefGoogle Scholar
  36. 36.
    J. Liu, M. Chen, L. Zhang et al., Nano Lett. 14, 7180 (2014)CrossRefGoogle Scholar
  37. 37.
    F. Xiao, S. Yuan, B. Liang, G. Li, S.O. Pehkonen, T. Zhang, J. Mater. Chem. A 3, 4374 (2015)CrossRefGoogle Scholar
  38. 38.
    Q. Wang, J. Yan, Y. Wang et al., Carbon 67, 119 (2014)CrossRefGoogle Scholar
  39. 39.
    Y.X. Zhang, M. Kuang, J.J. Wang, CrystEngComm 16, 492 (2014)CrossRefGoogle Scholar
  40. 40.
    G.W. Yang, C.L. Xu, H.L. Li, Chem. Commun. (Cambridge) 48, 6537 (2008)CrossRefGoogle Scholar
  41. 41.
    X. Zheng, Y. Ye, Q. Yang, B. Geng, X. Zhang, Chem. Eng. J. 290, 353 (2016)CrossRefGoogle Scholar
  42. 42.
    H. Li, F. Musharavati, E. Zalenezhad, X. Chen, K.N. Hui, K.S. Hui, Electrochim. Acta 261, 178 (2018)CrossRefGoogle Scholar
  43. 43.
    X. Xia, J. Tu, Y. Zhang et al., ACS Nano 6, 5531 (2012)CrossRefGoogle Scholar
  44. 44.
    T.H. Ko, D. Lei, S. Balasubramaniam et al., Electrochim. Acta 247, 524 (2017)CrossRefGoogle Scholar
  45. 45.
    T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Mater. Chem. A 359, 371–378 (2017)Google Scholar
  46. 46.
    D. He, G. Wang, G. Liu, J. Bai, H. Suo, C. Zhao, J. Alloys Compd. 699, 706 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunPeople’s Republic of China
  2. 2.College of Communication EngineeringJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations