Skip to main content
Log in

Enhancing the photovoltaic performance of perovskite solar cells by potassium ions doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organometal halide perovskite solar cells (PSCs) have attracted much attention due to their high photovoltaic efficiency and low fabrication cost. The perovskite layer plays a critical role on the power conversion efficiency (PCE). The main issues in perovskite layer are the coverage and crystallinity of perovskite grain based on substrate. Here, potassium ions were doped into perovskite layer to improve the growth, structure, properties of perovskite films and the photovoltaic performance of PSCs. The potassium ions significantly affect the Jsc and efficiency but affect the Voc slightly. The Jsc increases from 14.73 to 19.98 mA cm−2, and the efficiency increases from 10.16 to 13.57% at the doping level of 0.5% (molar ratio). The incorporation of potassium ions into perovskite also affects the crystallisation and morphology of the perovskite films and thus the PCE of PSCs. The crystallinity and denseness of perovskite film are enhanced and crystallite size is enlarged after potassium ions are doped into perovskite layer. At the same time, hysteresis free and stable device is obtained with the PSC at the doping level of 0.5% of potassium ions (molar ratio).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, Science 342, 344 (2013)

    Article  Google Scholar 

  2. Z. Huanping, C. Qi, L. Gang, Science 345, 542 (2014)

    Article  Google Scholar 

  3. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, J. Phys. Chem. Lett. 5, 3241 (2014)

    Article  Google Scholar 

  4. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, A. Rizzo, J. Chem. Mater. 25, 4613 (2013)

    Article  Google Scholar 

  5. P.C. Jr, T.J. Savenije, M. Abdellah, J. Am. Chem. Soc. 136, 5189 (2014)

    Article  Google Scholar 

  6. B. NREL, http://www.nrel.gov/ncpv/images/efficiency-chart.jpg, 2016

  7. O. Malinkiewicz, A. Yella, H.L. Yong, Nat. Photonics. 8, 128 (2014)

    Article  Google Scholar 

  8. F. Isikgor, B. Li, H. Zhu, J. Mater. Chem. A. (2016). https://doi.org/10.1039/c6ta03381d

    Google Scholar 

  9. N.J. Jeon, J.H. Noh, W.S. Yang, Nature 517, 476 (2015)

    Article  Google Scholar 

  10. W.S. Yang, J.H. Noh, N.J. Jeon, Science 348, 1234 (2015)

    Article  Google Scholar 

  11. J. Shi, Y. Luo, H. Wei, ACS. Appl. Mater. Interfaces. 6, 9711 (2014)

    Article  Google Scholar 

  12. M.J. Carnie, C. Charbonneau, M.L. Davies, Chem. Commun. 49, 7893 (2013)

    Article  Google Scholar 

  13. Y. Ogomi, A. Morita, S. Tsukamoto, J. Phys. Chem. Lett. 5, 1004 (2014)

    Article  Google Scholar 

  14. F. Hao, C.C. Stoumpos, R.P.H. Chang, J. Am. Chem. Soc. 45, 8094 (2014)

    Article  Google Scholar 

  15. X.K. Xin, M. He, W. Han, J. Jung, Z.Q. Lin, Angew. Chem. Int. Ed. 50, 11739 (2011)

    Article  Google Scholar 

  16. P.C. Dai, G. Zhang, Y.C. Chen, H.C. Jiang, Z.Y. Feng, Z.J. Lin, J.H. Zhan, Chem. Commun. 48, 3006 (2012)

    Article  Google Scholar 

  17. N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, Angew. Chem. Int. Ed. 53, 3151 (2014)

    Article  Google Scholar 

  18. Y. Zhou, M. Yang, S. Pang, K. Zhu, K.N.P. Padture, J. Am. Chem. Soc. 138, 5535 (2016)

    Article  Google Scholar 

  19. D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, Science. 342, 341 (2013)

    Article  Google Scholar 

  20. N. Pellet, P. Gao, G. Gregori, Angew. Chem. 53, 3151 (2014)

    Article  Google Scholar 

  21. N.K. Noel, S.D. Stranks, A. Abate, Energy Environ. Sci. 7, 3061 (2014)

    Article  Google Scholar 

  22. X. Zhang, X. Ren, B. Liu, Energy Environ. Sci. 10, 2095–2102 (2017)

    Google Scholar 

  23. T.W. Wang, Z. Wang, S. Pathak, Energy Environ. Sci. 9, 2892–2901 (2016)

    Google Scholar 

  24. K.M. Boopathi, R. Mohan, T.Y. Huang, J. Mater. Chem. A. 4, 1591 (2016)

    Article  Google Scholar 

  25. J. Chang, Z. Lin, H. Zhu, F.H. Isikgor, J. Mater. Chem. A. 4, 16546 (2016)

    Article  Google Scholar 

  26. N.J. Jeon, J.H. Noh, Y.C. Kim, Nat. Mater. 13, 897 (2014)

    Article  Google Scholar 

  27. T.C. Steven, Ferroelectrics. 470, 13 (2014)

    Article  Google Scholar 

  28. J.H. Heo, M.S. You, M.H. Chang, Nano Energy 15, 530 (2015)

    Article  Google Scholar 

  29. Y. Huang, J. Zhu, Y. Ding, ACS Appl. Mater. Interfaces 8, 8162 (2016)

    Article  Google Scholar 

  30. N. Kubota, J.W. Mullin, J. Cryst. Growth 152, 203 (1995)

    Article  Google Scholar 

  31. K. Sangwal, J. Cryst. Growth 203, 197 (1999)

    Article  Google Scholar 

  32. J.J. De Yoreo, P.U. Gilbert, N.A. Sommerdijk, Science. 349, 6760 (2015)

    Article  Google Scholar 

  33. T. Bu, X. Liu, Y. Zhou, Energy Environ. Sci. 10, 2509–2515 (2017)

    Article  Google Scholar 

  34. T.J. Jacobsson, J.P. Correabaena, E.H. Anaraki, J. Am. Chem. Soc. 138, 10331 (2016)

    Article  Google Scholar 

  35. B. Chen, M. Yang, S. Priya, J. Phys. Chem. Lett. 7, 905 (2016)

    Article  Google Scholar 

  36. H.W. Chen, N. Sakai, M. Ikegami, J. Phys. Chem. Lett. 6, 164 (2015)

    Article  Google Scholar 

  37. A. Dualeh, T. Moehl, N. Tetreault, ACS Nano. 8, 362 (2014)

    Article  Google Scholar 

  38. T.P. Gujar, T. Unger, A. Schönleber, Phys. Chem. Chem. Phys. 20, 605 (2017)

    Article  Google Scholar 

  39. D. Yao, C. Zhang, N.D. Pham, J. Phys. Chem. Lett. 9, 2113 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 223 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Wang, J. & Zhu, L. Enhancing the photovoltaic performance of perovskite solar cells by potassium ions doping. J Mater Sci: Mater Electron 30, 2057–2066 (2019). https://doi.org/10.1007/s10854-018-0477-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0477-z

Navigation