Skip to main content

Flexible, biodegradable and recyclable solar cells: a review

Abstract

Solar energy is conceivably the largest source of renewable energy at our disposal, but vital advances are expected to make solar cells economically viable. Biodegradable and flexible solar cells are currently under extensive investigation for environmentally-friendly electronic applications. Biomaterials based solar cell is emerging due to their sustainable, scalable, abundant, renewable, and environmentally-friendly energy production. This review highlights recent research progress in the emerging group of biomaterials and their integration for flexible solar cell devices. The more emphasis is given to the absolute recyclable solar cell technology, processing conditions and optimized processing conditions to produce a high amount of energy. This review briefly describes the recent progress in these classes of material, covering substrates and semiconductors. A prominent demand still exists for a next-generation of flexible, biodegradable and biocompatible solar cell substrate for ultimate energy generation application.

This is a preview of subscription content, access via your institution.

Fig. 1

Reproduced with permission from Ref. [44]. Copyright 2014, The Royal Society of Chemistry

Fig. 2

Reproduced with permission from Ref. [59]. Copyright 2011, Elsevier Ltd

Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Ref. [25]. Copyright 2012, The Royal Society of Chemistry

Fig. 6

Adapted from Ref. [124]

Fig. 7

Reproduced with permission from Ref. [139]. Copyright 2015, Elsevier Ltd

Fig. 8

Reproduced with permission from Ref. [170]. Copyright 2013, The Royal Society of Chemistry

Fig. 9

Adapted from Ref. [1]. (Color figure online)

Fig. 10

Reproduced with permission from Ref. [160]. Copyright 2014, Elsevier Ltd

Fig. 11

Reproduced with permission from Ref. [160]. Copyright 2014, Elsevier Ltd

Fig. 12

Reproduced with permission from Ref. [171]. Copyright 2016, Wiley Interscience. (Color figure online)

Fig. 13

Reproduced with permission from Ref. [172]. Copyright 2014, The American Chemical Society

Fig. 14

Reproduced with permission from Ref. [39]. Copyright 2011, Wiley Interscience

References

  1. 1.

    Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen, Sci. Rep. 3, 1536 (2013)

    Google Scholar 

  2. 2.

    M.A. Green, Solar Cells: Operating Principles, Technology, and System Applications, (Prentice-Hall, Inc., Englewood Cliffs, 1982)

    Google Scholar 

  3. 3.

    R.C. Neville, Solar Energy Conversation: The Solar Cells (Elsevier, Amsterdam, 1978)

    Google Scholar 

  4. 4.

    G.A. Chamberlain, Sol. Cells. 8, 47–83 (1983)

    Google Scholar 

  5. 5.

    B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi, 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, In: 37th IEEE Photovoltaic Specialists Conference, (2011), pp. 4–8

  6. 6.

    E. Yablonovitch, T. Gmitter, J.P. Harbison, R. Bhat, Appl. Phys. Lett. 51, 2222–2224 (1987)

    Google Scholar 

  7. 7.

    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)

    Google Scholar 

  8. 8.

    S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78, 841–843 (2001)

    Google Scholar 

  9. 9.

    M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Prog. Photovolt. 9, 287–293 (2001)

    Google Scholar 

  10. 10.

    N.C. Greenham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54, 17628–17637 (1996)

    Google Scholar 

  11. 11.

    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. AlMaadeed, A.R. Polu, K. Chidambaram, J. Electron. Mater. 46, 2406–2418 (2017)

    Google Scholar 

  12. 12.

    K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, R.R. Deshmukh, P.R. Bhagat, RSC Adv. 5, 61933–61945 (2015)

    Google Scholar 

  13. 13.

    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, K. Chidambaram, Eur. Polym. J. 76, 14–27 (2016)

    Google Scholar 

  14. 14.

    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, R.R. Deshmukh, A.M. Trimukhe, S.K.K. Pasha, A.R. Polu, M.A.A. AlMaadeed, K. Chidambaram, J. Polym. Res. 24, 27 (2017)

    Google Scholar 

  15. 15.

    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789–1791 (1995)

    Google Scholar 

  16. 16.

    L.S. Roman, M.R. Andersson, T. Yohannes, O. Inganás, Adv. Mater. 9, 1164–1168 (1997)

    Google Scholar 

  17. 17.

    J.J. Dittmer, E.A. Marseglia, R.H. Friend, Adv. Mater. 12, 1270–1274 (2000)

    Google Scholar 

  18. 18.

    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, S.K.K. Pasha, R.R. Deshmukh, K. Chidambaram, Mater. Chem. Phys. 186, 188–201 (2017)

    Google Scholar 

  19. 19.

    P.M. Borsenberger, W.T. Gruenbaum, M.B. O’Regan, L.J. Rossi, J. Polym. Sci. B 33, 2143–2149 (1995)

    Google Scholar 

  20. 20.

    D.S. Ginger, N.C. Greenham, Phys. Rev. B 59, 10622–10629 (1999)

    Google Scholar 

  21. 21.

    J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, M. Grätzel, J. Phys. Chem. 100, 9577–9578 (1996)

    Google Scholar 

  22. 22.

    K. Deshmukh, M.B. Ahamed, R.R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, J. Mater. Sci. 28, 559–575 (2017)

    Google Scholar 

  23. 23.

    K. Deshmukh, M.B. Ahamed, K.K. Sadasivuni, D. Ponnamma, M.A.A. AlMaadeed, R.R. Deshmukh, S.K.K. Pasha, A.R. Polu, K. Chidambaram, J. Appl. Polym. Sci. 134, 44427 (2017)

    Google Scholar 

  24. 24.

    G. Li, R. Zhu, Y. Yang, Nat. Photon. 6, 153–161 (2012)

    Google Scholar 

  25. 25.

    M.J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G.G. Wallace, D.L. Officer, A. Furube, R. Katoh, S. Mori, A.J. Mozer, Chem Commun. 48, 4145–4162 (2012)

    Google Scholar 

  26. 26.

    C.W. Tang, Appl. Phys. Lett. 48, 183–185 (1986)

    Google Scholar 

  27. 27.

    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474–1476 (1992)

    Google Scholar 

  28. 28.

    M. Hiramoto, H. Fujiwara, M. Yokoyama, J. Appl. Phys. 72, 3781–3787 (1992)

    Google Scholar 

  29. 29.

    M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 805–813 (2008)

    Google Scholar 

  30. 30.

    C.J. Brabec, Sol. Energy Mater. Sol. Cells 83, 273–292 (2004)

    Google Scholar 

  31. 31.

    F.C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Sol. Energy Mater. Sol. Cells 83, 293–300 (2004)

    Google Scholar 

  32. 32.

    M.K. Mohanapriya, K. Deshmukh, B. Ahamed, K. Chidambaram, S.K.K. Pasha, Adv. Mater. Lett. 7, 996–1002 (2016)

    Google Scholar 

  33. 33.

    R.E. Chapin, M.W. Harris, E.S. Hunter, B.J. Davis, B.J. Collins, A.C. Lockhart, Fundam. Appl. Toxicol. 27, 140–148 (1995)

    Google Scholar 

  34. 34.

    A. Boughriet, N. Proix, G. Billon, P. Recourt, B. Ouddane, Water Air Soil Pollut. 180, 83–95 (2007)

    Google Scholar 

  35. 35.

    Z. Tong, M. Bischoff, L. Nies, B. Applegate, R.F. Turco, Environ. Sci. Technol. 41, 2985–2991 (2007)

    Google Scholar 

  36. 36.

    Y.B. Cheng, A. Pascoe, F. Huang, Y. Peng, Nature 539, 488–489 (2016)

    Google Scholar 

  37. 37.

    F. Wang, Z. Chen, L. Xiao, B. Qu, Q. Gong, Sol. Energy Mater. Sol. Cells 94, 1270–1274 (2010)

    Google Scholar 

  38. 38.

    T.S. Kim, S.I. Na, S.S. Kim, B.K. Yu, J.S. Yeo, D.Y. Kim, Phys. Status Solidi RRL 6, 13–15 (2012)

    Google Scholar 

  39. 39.

    A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Adv. Energy Mater. 1, 1018–1022 (2011)

    Google Scholar 

  40. 40.

    J. Vartiainen, T. Pöhler, K. Sirola, L. Pylkkänen, H. Alenius, J. Hokkinen, U. Tapper, P. Lahtinen, A. Kapanen, K. Putkisto, P. Hiekkataipale, P. Eronen, J. Ruokolainen, A. Laukkanen, Cellulose 18, 775–786 (2011)

    Google Scholar 

  41. 41.

    N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Carbohydr. Polym. 90, 735–764 (2012)

    Google Scholar 

  42. 42.

    H. Yu, Z. Qin, B. Liang, N. Liu, Z. Zhou, L. Chen, J. Mater. Chem. A 1, 3938–3944 (2013)

    Google Scholar 

  43. 43.

    S. Berson, R.D. Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 17, 1377–1384 (2007)

    Google Scholar 

  44. 44.

    S.J. Lee, Y.H. Kim, J.K. Kim, H. Baik, J.H. Park, J. Lee, J. Nam, J.H. Park, T.W. Lee, G.R. Yi, J.H. Cho, Nanoscale 6, 11828–11834 (2014)

    Google Scholar 

  45. 45.

    M. Pagliaro, R. Ciriminna, G. Palmisano, Chem Sus Chem. 1, 880–891 (2008)

    Google Scholar 

  46. 46.

    D. Pola, A. Chianese, Bernasconi, Sol. Energy 81, 1144–1158 (2007)

    Google Scholar 

  47. 47.

    H. Park, Y. Jun, H.G. Yun, S.Y. Lee, M.G. Kang, J. Electrochem. Soc. 155, F145–F149 (2008)

    Google Scholar 

  48. 48.

    T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Sol. Energy Mater. Sol. Cells 94, 812–816 (2010)

    Google Scholar 

  49. 49.

    T. Miyasaka, M. Ikegami, Y. Kijitori, J. Electrochem. Soc. 154, A455–A461 (2007)

    Google Scholar 

  50. 50.

    S. Ito, N.L.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, M. Gratzel, Chem. Commun. 2006, 4004–4006 (2006)

    Google Scholar 

  51. 51.

    M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Nat. Mater. 4, 607–611 (2005)

    Google Scholar 

  52. 52.

    T.N. Murakami, K. Yujiro, K. Norimichi, M. Tsutomu, Chem. Lett. 32, 1076–1077 (2003)

    Google Scholar 

  53. 53.

    H. Pan, S.H. Ko, N. Misra, C.P. Grigoropoulos, Appl. Phys. Lett. 94, 071117 (2009)

    Google Scholar 

  54. 54.

    D. Zhang, T. Yoshida, K. Furuta, H. Minoura, J. Photochem. Photobiol. A 164, 159–166 (2004)

    Google Scholar 

  55. 55.

    H. Lindström, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, J. Photochem. Photobiol. A 145, 107–112 (2001)

    Google Scholar 

  56. 56.

    W. Cai, X. Gong, Y. Cao, Sol. Energy Mater. Sol. Cells 94, 114–127 (2010)

    Google Scholar 

  57. 57.

    M. Reyes-Reyes, K. Kim, D.L. Carroll, Appl. Phys. Lett. 87, 083506 (2005)

    Google Scholar 

  58. 58.

    M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158 (2008)

    Google Scholar 

  59. 59.

    G. Hashmi, K. Miettunen, T. Peltola, J. Halme, I. Asghar, K. Aitola, M. Toivola, P. Lund, J. Renew. Sustain. Energy Rev. 15, 3717–3732 (2011)

    Google Scholar 

  60. 60.

    T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, C.J. Brabec, Adv. Funct. Mater. 15, 1193–1196 (2005)

    Google Scholar 

  61. 61.

    F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, Sol. Energy Mater. Sol. Cells 93, 422–441 (2009)

    Google Scholar 

  62. 62.

    J. Liu, E.N. Kadnikova, Y. Liu, M.D. McGehee, J.M. J. Fréchet, J. Am. Chem. Soc. 126, 9486–9487 (2004)

    Google Scholar 

  63. 63.

    T. Nielsen, K. Bechgaard, F.C. Krebs, Macromolecules 38, 658–659 (2005)

    Google Scholar 

  64. 64.

    H. Wolf, Rauschenbach, Adv. Energy Convers. 3, 455–479 (1963)

    Google Scholar 

  65. 65.

    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394–412 (2009)

    Google Scholar 

  66. 66.

    O. Jørgensen, J. Hagemann, F.C. Alstrup, Krebs, Sol. Energy Mater. Sol. Cells 93, 413–421 (2009)

    Google Scholar 

  67. 67.

    J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Nat. Mater. 6, 497–500 (2007)

    Google Scholar 

  68. 68.

    W.M. Keogh, A.W. Blakers, Accurate Performance Measurement of Silicon Solar Cells, (Australian National University Research Publications, Canberra, 2018) pp. 1–200

    Google Scholar 

  69. 69.

    K.A. Emergy, C.R. Osterwald, PV performance measurement algorithms procedures and equipment. IEEE Conf. Photovolt. Spec. 1062, 1068–1073 (1990)

    Google Scholar 

  70. 70.

    I. Santiago, D. Trillo-Montero, I.M. Moreno-Garcia, V. Pallarés-López, J.J. Luna-Rodríguez, Renew. Sustain. Energy Rev. 90, 70–89 (2018)

    Google Scholar 

  71. 71.

    M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovolt. 4, 96–99 (2014)

    Google Scholar 

  72. 72.

    T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Sol. Energ. Mater. Sol. Cells 95, 18–21 (2011)

    Google Scholar 

  73. 73.

    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666–671 (2011)

    Google Scholar 

  74. 74.

    https://www.pveducation.org/pvcdrom/characterisation/measurement-of-solar-cell-efficiency

  75. 75.

    A. Freundlich, A. Alemu, Physica Status Solidi C 2, 2978–2981 (2005)

    Google Scholar 

  76. 76.

    A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, Nat. Mater. 10, 857 (2011)

    Google Scholar 

  77. 77.

    L. You, K. Dou, T. Yoshimura, K. Kato, T. Ohya, K. Moriarty, C.C. Emery, J. Chen, G. Gao, Y. Li, Yang, Nat. Commun. 4, 1446 (2013)

    Google Scholar 

  78. 78.

    A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, S.W. Glunz, Prog. Photovolt. Res. Appl. 15, 493–505 (2007)

    Google Scholar 

  79. 79.

    R. McIntosh, C.B. Honsberg, The influence of edge recombination on a solar cell’s IV curve, In: Proc. 16th PVSEC, Glasgow, (2000) pp. 1651–1654

  80. 80.

    https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/

  81. 81.

    J. Schmidt, M. Kerr, P.P. Altermatt, J. Appl. Phys. 88, 1494–1497 (2000)

    Google Scholar 

  82. 82.

    J. Kerr, A. Cuevas, R.A. Sinton, J. Appl. Phys. 91, 399–404 (2002)

    Google Scholar 

  83. 83.

    A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B 86, 165202 (2012)

    Google Scholar 

  84. 84.

    B. Sproul, J. Appl. Phys. 76, 2851–2854 (1994)

    Google Scholar 

  85. 85.

    K.L. Luke, L.J. Cheng, J. Appl. Phys. 61, 2282–2293 (1987)

    Google Scholar 

  86. 86.

    A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, D. Salzman, Prog. Photovolt. Res. Appl. 17, 75–83 (2009)

    Google Scholar 

  87. 87.

    A. Cuevas, D. Macdonald, Sol. Energy 76, 255–262 (2004)

    Google Scholar 

  88. 88.

    H. Nagel, C. Berge, A.G. Aberle, J. Appl. Phys. 86, 6218–6221 (1999)

    Google Scholar 

  89. 89.

    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A.D. Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck, Nature 397, 121–128 (1999)

    Google Scholar 

  90. 90.

    A. Kraft, Plated Copper Front Side Metallization on Printed Seed-layers for Silicon Solar Cells, (Fraunhofer Verlag, Stuttgart, 2015)

    Google Scholar 

  91. 91.

    R. Corkish, K. Luke, P. Altermatt, G. Heiser, Simulating electron-beam-induced current profiles across p-n junctions, In: 16th European Solar Energy Conference (2000) pp. 1590–1593

  92. 92.

    F.M. Smits, Bell Syst. Technol. J. 37, 711–718 (1958)

    Google Scholar 

  93. 93.

    F.P. Dale, Smith, J. Appl. Phys. 32, 1377–1381 (1961)

    Google Scholar 

  94. 94.

    L. Gostein, Dunn, Light soaking effects on photovoltaic modules; overview and literature review. Overview and literature review. In Photovoltaic Specialists Conference (PVSC), 37th IEEE, (2011), pp. 003126–003131

  95. 95.

    A.A. Shruti, V.D. Vivek, M. Subas, B.O. Satishchandra, RSC Adv. 2, 11645–11649 (2012)

    Google Scholar 

  96. 96.

    G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang, Y.J. Shin, Adv. Mater. 17, 2349–2353 (2005)

    Google Scholar 

  97. 97.

    S. Uchida, M. Tomiha, H. Takizawa, M. Kawaraya, J. Photochem. Photobiol. A 164, 93–96 (2004)

    Google Scholar 

  98. 98.

    R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631–2645 (1998)

    Google Scholar 

  99. 99.

    R. Goebbert, M.A. Nonninger, H. Aegerter, Schmidt, Thin Solid Films 351, 79–84 (1999)

    Google Scholar 

  100. 100.

    K. Zeng, F. Zhu, J. Hu, L. Shen, K. Zhang, H. Gong, Thin solid films 443, 60–65 (2003)

    Google Scholar 

  101. 101.

    J.G. Doh, J.S. Hong, R. Vittal, M.G. Kang, N.G. Park, K.J. Kim, Chem. Mater. 16, 493–497 (2004)

    Google Scholar 

  102. 102.

    T. Karasawa, Y. Miyata, Thin Solid Films 223, 79–84 (1993)

    Google Scholar 

  103. 103.

    J.K. Sheu, Y.K. Su, G.C. Chi, M.J. Jou, C.M. Chang, Appl. Phys. Lett. 72, 3317–3319 (1998)

    Google Scholar 

  104. 104.

    S. Major, K.L. Chopra, Sol. Energy Mater. 17, 319–327 (1988)

    Google Scholar 

  105. 105.

    O. Akinwunmi, M.A. Eleruja, J.O. Olowolafe, G.A. Adeqboyega, E.O.B. Ajayi, Opt. Mater. 13, 255–259 (1999)

    Google Scholar 

  106. 106.

    C. Liu, T. Matsutani, N. Yamamoto, M. Kiuchi, Europhys. Lett. 59, 606–611 (2002)

    Google Scholar 

  107. 107.

    S. Ngamsinlapasathian, A. Kitiyanan, T. Fujieda, S. Yoshikawa, ECS Trans. 1, 7–15 (2006)

    Google Scholar 

  108. 108.

    A. Katz, S. Gevorgyan, M.S. Orynbayev, F.C. Krebs, Eur. Phys. J. Appl. Phys. 36, 307–311 (2007)

    Google Scholar 

  109. 109.

    J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H.S. Jung, M. Choi, Energy Environ. Sci. 10, 337–345 (2017)

    Google Scholar 

  110. 110.

    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4270 (2004)

    Google Scholar 

  111. 111.

    J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fang, S. Yin, T.A. Sato, Adv. Funct. Mater. 17, 2645–2652 (2007)

    Google Scholar 

  112. 112.

    A.F. Nogueira, C. Longo, M.A. De Paoli, Coord. Chem. Rev. 248, 1455–1468 (2004)

    Google Scholar 

  113. 113.

    Y. Wang, Sol. Energy Mater. Sol. Cells 93, 1167–1175 (2009)

    Google Scholar 

  114. 114.

    A.F. Nogueira, M.A. De Paoli, Sol. Energy Mater. Sol. Cells 61, 135–141 (2000)

    Google Scholar 

  115. 115.

    F. Nogueira, J.R. Durrant, M.A. De Paoli, Adv. Mater. 13, 826–830 (2001)

    Google Scholar 

  116. 116.

    T. Stergiopoulos, I.M. Arabatzis, M. Kalbac, I. Lukes, P. Falaras, J. Mater. Process. Technol. 161, 107–112 (2005)

    Google Scholar 

  117. 117.

    T. Stergiopoulos, I.M. Arabatzis, H. Cachet, P.J. Falaras, J. Photochem. Photobiol. A 155, 163–170 (2003)

    Google Scholar 

  118. 118.

    A. Vicente, H. Águas, T. Mateus, A. Araújo, A. Lyubchyk, S. Siitonen, E. Fortunato, R. Martins, J. Mat. Chem. A 3, 13226–13236 (2015)

    Google Scholar 

  119. 119.

    V.R. Voggu, J. Sham, S. Pfeffer, J. Pate, L. Fillip, T.B. Harvey, R.M. Brown Jr., B.A. Korgel, ACS Energy Lett. 2, 574–581 (2017)

    Google Scholar 

  120. 120.

    D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14, 589 (1973)

    Google Scholar 

  121. 121.

    A.T. Vicente, A. Araújo, M.J. Mendes, D. Nunes, M.J. Oliveira, O. Sanchez-Sobrado, M.P. Ferreira, H. Águas, E. Fortunato, R. Martins, J. Mater. Chem. C 6, 3143–3181 (2018)

    Google Scholar 

  122. 122.

    R. Martins, I. Ferreira, E. Fortunato, Physica Status Solidi RRL 5, 332–335 (2011)

    Google Scholar 

  123. 123.

    A. Vincent, Prog. Solid State Chem. 17, 145–261 (1987)

    Google Scholar 

  124. 124.

    J.N. De Freitas, J.E. Benedetti, F.S. Freitas, A.F. Nogueira, M.A. De Paoli, Polymer electrolytes for dye-sensitized solar cells, In Polymer Electrolytes: Fundamentals and Applications, edited by C. Sequeira, D. Santos (Woodhead Publishing Ltd, Cambridge, 2010), p. 387

    Google Scholar 

  125. 125.

    M.H. Khanmirzaei, S. Ramesh, K. Ramesh, Mater. Des. 85, 833–837 (2015)

    Google Scholar 

  126. 126.

    Y. Yang, J. Cui, P. Yi, X. Zheng, X. Guo, W. Wang, J. Power Sources 248, 988–993 (2014)

    Google Scholar 

  127. 127.

    H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Adv. Funct. Mater. 25, 3592–3598 (2015)

    Google Scholar 

  128. 128.

    M. Smeets, K. Wilken, K. Bittkau, H. Aguas, L. Pereira, E. Fortunato, R. Martins, V. Smirnov, Physica Status Solidi A 214, 1700070 (2017)

    Google Scholar 

  129. 129.

    J. Shi, S. Peng, J. Pei, Y. Liang, F. Cheng, J. Chen, ACS Appl. Mater. Interfaces 1, 944–950 (2009)

    Google Scholar 

  130. 130.

    Y. Saito, H. Kataoka, C. Capiglia, H. Yamamoto, J. Phys. Chem. B 104, 2189–2192 (2000)

    Google Scholar 

  131. 131.

    S.N.F. Yusuf, M.F. Aziz, H.C. Hassan, T.M.W.J. Bandara, B.E. Mellander, M.A. Careem, A.K. Arof, J. Chem. 2014, 783023 (2014)

    Google Scholar 

  132. 132.

    Y. Yang, H. Hu, C.H. Zhou, S. Xu, B. Sebo, X.Z. Zhao, J. Power Sources 196, 2410–2415 (2011)

    Google Scholar 

  133. 133.

    O. Avellaneda, A.D. Goncalves, J.E. Benedetti, A.F. Nogueira, Electrochim. Acta 55, 1468–1474 (2010)

    Google Scholar 

  134. 134.

    S.N.F. Yusuf, A.D. Azzahari, R. Yahya, S.R. Majid, M.A. Careem, A.K. Arof, RSC Adv. 6, 27714–27724 (2016)

    Google Scholar 

  135. 135.

    H.L. Hsu, C.F. Tien, Y.T. Yang, J. Leu, Electrochim. Acta 91, 208–213 (2013)

    Google Scholar 

  136. 136.

    J.R. Bella, C. Nair, Gerbaldi, RSC Adv. 3, 15993–16001 (2013)

    Google Scholar 

  137. 137.

    R. Singh, N.A. Jadhav, S. Majumder, B. Bhattacharya, P.K. Singh, Carbohydr. Polym. 91, 682–685 (2013)

    Google Scholar 

  138. 138.

    P. Salvador, D. Puglies, F. Bella, A. Chiappone, A. Sacco, S. Bianco, M. Quaglio, Electrochim. Acta 146, 44–51 (2014)

    Google Scholar 

  139. 139.

    F. Bella, N.N. Mobarak, F.N. Jumaah, A. Ahmad, Electrochim. Acta 151, 306–311 (2015)

    Google Scholar 

  140. 140.

    M.H. Buraidah, L.P. Teo, S.R. Majid, R. Yahya, R.M. Taha, A.K. Arof, Int. J. Photoenergy 2010, 805836 (2010)

    Google Scholar 

  141. 141.

    K. Singh, B. Bhattacharya, R.K. Nagarale, K.W. Kim, H.W. Rhee, Synth. Met. 160, 139–142 (2010)

    Google Scholar 

  142. 142.

    M. Kaneko, T. Hoshi, Y. Kaburagi, H. Ueno, J. Electroanal. Chem. 572, 21–27 (2004)

    Google Scholar 

  143. 143.

    V.K. Singh, A. Annu, U. Singh, P. Singh, S.P. Pandey, B. Bhattacharya, P.K. Singh, J. Optoelectron. Adv. Mater. 15, 927–931 (2013)

    Google Scholar 

  144. 144.

    J. Nemoto, M. Sakata, T. Hoshi, H. Ueno, M. Kaneko, J. Electroanal. Chem. 599, 23–30 (2007)

    Google Scholar 

  145. 145.

    M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Opt. Mater. 32, 723–728 (2010)

    Google Scholar 

  146. 146.

    R. Singh, J. Baghel, S. Shukla, B. Bhattacharya, H.W. Rhee, P.K. Singh, Phase Transitions 87, 1237–1245 (2014)

    Google Scholar 

  147. 147.

    S. Rudhziah, A. Ahmad, I. Ahmad, N.S. Mohamed, Electrochim. Acta 175, 162–168 (2015)

    Google Scholar 

  148. 148.

    S. Alias, A.A. Mohamad, Ionics 19, 1185–1194 (2013)

    Google Scholar 

  149. 149.

    L. Hsu, W.T. Hsu, J. Leu, Electrochim. Acta 56, 5904–5909 (2011)

    Google Scholar 

  150. 150.

    K. Suzuki, M. Yamaguchi, M. Kumagai, N. Tanabe, S. Yanagida, C. R. Chimie 9, 611–616 (2006)

    Google Scholar 

  151. 151.

    Y. Yang, X.Y. Guo, X.Z. Zhao, Mater. Sci. Forum 685, 76–81 (2011)

    Google Scholar 

  152. 152.

    L. Hsu, C.F. Tien, Y.T. Yang, J. Leu, Electrochim. Acta 91, 208–213 (2013)

    Google Scholar 

  153. 153.

    M.H. Buraidah, L.P. Teo, S.N.F. Yusuf, M.M. Noor, M.Z. Kufian, M.A. Careem, S.R. Majid, R.M. Taha, A.K. Arof, Int. J. Photoenergy 2011, 273683

  154. 154.

    M.I. Vladu, Chem. Soc. Rev. 43, 588–610 (2014)

    Google Scholar 

  155. 155.

    D. Tobjörk, R. Österbacka, Adv. Mater. 23, 1935–1961 (2011)

    Google Scholar 

  156. 156.

    A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Adv. Mater. 23, 3426–3430 (2011)

    Google Scholar 

  157. 157.

    C. Siegel, S.T. Philips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Adv. Funct. Mater. 20, 28–35 (2010)

    Google Scholar 

  158. 158.

    M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Nat. Commun. 3, 770 (2012)

    Google Scholar 

  159. 159.

    H. Zhu, Z. Fang, C. Preston, Y. Li, L. Hu, Energy Environ. Sci. 7, 269–287 (2014)

    Google Scholar 

  160. 160.

    Y. Zhou, T.M. Khan, J.C. Liu, C. Fuentes-Hernandez, J.W. Shim, E. Najafabadi, J.P. Youngblood, R.J. Moon, B. Kippelen, Org. Electron. 15, 661–666 (2014)

    Google Scholar 

  161. 161.

    D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. Ed. 50, 5438–5466 (2011)

    Google Scholar 

  162. 162.

    H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Adv. Mater. 17, 153–155 (2005)

    Google Scholar 

  163. 163.

    A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential, J. Appl. Polym. Sci. 37 (1983) Cellulose conference, Syracuse, NY, USA

  164. 164.

    T. Isogai, H. Saito, Fukuzumi, Nanoscale 3, 71–85 (2011)

    Google Scholar 

  165. 165.

    A. Hoeng, J. Denneulin, Bras, Nanoscale 8, 13131–13154 (2016)

    Google Scholar 

  166. 166.

    B. Filson, B.E. Dawson-Andoh, D. Schwegler-Berry, Green Chem. 11, 1808–1814 (2009)

    Google Scholar 

  167. 167.

    H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai, Biomacromolecules 10, 162–165 (2009)

    Google Scholar 

  168. 168.

    H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan, L. Hu, Nanoscale 5, 3787–3792 (2013)

    Google Scholar 

  169. 169.

    M. Pavan, S. Rühle, A. Ginsburg, D.A. Keller, H.N. Barad, P.M. Sberna, D. Nunes, R. Martins, A.Y. Anderson, A. Zaban, E. Fortunato, Sol. Energy Mater. Sol. Cells 132, 549–556 (2015)

    Google Scholar 

  170. 170.

    L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J.T. Bloking, M.D. McGehee, L. Wagberg, Y. Cui, Energy Environ. Sci. 6, 513–518 (2013)

    Google Scholar 

  171. 171.

    S.V. Costa, P. Pingel, S. Janiets, A.F. Nogueira, J. Appl. Polym. Sci. 133, 43679 (2016)

    Google Scholar 

  172. 172.

    L. Leonat, M.S. White, E.D. Glowacki, M.C. Scharber, T. Zillger, J. Rühling, A. Hünler, N.S. Sariciftci, J. Phys. Chem. C 118, 16813–16817 (2014)

    Google Scholar 

  173. 173.

    R.K. Pai, T.N. Ahipa, B. Hemavathi, RSC Adv. 6, 23760–23774 (2016)

    Google Scholar 

  174. 174.

    R.K. Pai, S. Pillai, T.N. Ahipa, J. Renew. Sustain. Energy 8, 023703 (2016)

    Google Scholar 

  175. 175.

    D. Carsten, D. Vladimir, Rep. Prog. Phys. 73, 092001–096901 (2010)

    Google Scholar 

Download references

Acknowledgements

This publication was made possible by the support of an UREP grant from the Qatar National Research Fund (UREP23-116-2-041). The statements made herein are solely the responsibility of the authors. Dr. Ahipa T. N. is grateful to the Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Kanakapura Taluk, Ramanagara-562112, India for providing necessary facilities. This research was supported by the Science & Engineering Research Board (SERB) (Project File No.: YSS/2014/000835) under Young Scientists Scheme, Govt. of India, New Delhi.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kishor Kumar Sadasivuni or Kalim Deshmukh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadasivuni, K.K., Deshmukh, K., Ahipa, T.N. et al. Flexible, biodegradable and recyclable solar cells: a review. J Mater Sci: Mater Electron 30, 951–974 (2019). https://doi.org/10.1007/s10854-018-0397-y

Download citation