Skip to main content
Log in

Facile ionothermal synthesis of TiO2 nanorods for photocatalytic H2 generation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Facile ionothermal method has been employed to synthesize One-dimensional (1-D) mixed phase TiO2 nanorods (NRs) using ionic liquid as the reaction medium. The PXRD pattern reveals the formation of mixed phase TiO2 having 68.3% of anatase and 31.7% rutile phase with average crystallite size of ~ 10 nm. TEM images depict the average thickness of TiO2 NRs are in the range 50–100 nm. The 1-D mixed phase TiO2 NRs showed 5 times better hydrogen production activity than P-25 in the water-glycerol mixture under solar light irradiation. The reason could be the synergetic effect and unique optical properties of 1-D anatase–rutile TiO2 mixed-phase system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3

Similar content being viewed by others

References

  1. C. Liu, N.P. Dasgupta, P. Yang, Chem. Mater. 26, 415–422 (2013)

    Article  Google Scholar 

  2. P.V. Kamat, J. Bisquert, J. Phys. Chem. C. 117, 14873–14875 (2013)

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Nature. 238, 37–38 (1972)

    Article  Google Scholar 

  4. J. Zhang, P. Zhou, J. Liu, J. Yu, Phys. Chem. Chem. Phys. 16, 20382–20386 (2014)

    Article  Google Scholar 

  5. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C. 13, 169–189 (2012)

    Article  Google Scholar 

  6. X. Huang, L. Meng, M. Du, Y. Li, J. Mater. Sci. 27, 7222–7226 (2016)

    Google Scholar 

  7. G. Nagaraj, A.D. Raj, A.A. Irudayaraj, J. Mater. Sci. 29, 4373–4381 (2018)

    Google Scholar 

  8. S. Feng, A. Runa, L. Liu, J. Wang, P. Su, T. Liu, S. Su, G. Zhu, W. Fu, H. Yang, J. Mater. Sci. 29, 16903–16910 (2018)

    Google Scholar 

  9. A.A. Navab, A. Nemati, A.A. Navab, H.M.M. Abad, in AIP Conference Proceedings, AIP Publishing (2018) https://doi.org/10.1063/1.5018947

  10. X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  11. S. Kuwabata, T. Tsuda, T. Torimoto, J. Phys. Chem. Lett. 1, 3177–3188 (2010)

    Article  Google Scholar 

  12. A. Taubert, Z. Li, Dalton Trans. (2007) https://doi.org/10.1039/B616593A

    Google Scholar 

  13. M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem. Int. Ed. 43, 4988–4992 (2004)

    Article  Google Scholar 

  14. M.V. Fedorov, A.A. Kornyshev, Chem. Rev. 114, 2978–3036 (2014)

    Article  Google Scholar 

  15. N. Kaur, V. Singh, N. J. Chem. 41, 2844–2868 (2017)

    Article  Google Scholar 

  16. W. Zheng, X. Liu, Z. Yan, L. Zhu, ACS Nano. 3, 115–122 (2008)

    Article  Google Scholar 

  17. M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K.Q. Zhang, Y. Lai, Z. Lin, Int. J. Hydrog. Energy. 42, 8418–8449 (2017)

    Article  Google Scholar 

  18. Y. Qiu, F. Ouyang, R. Zhu, Int. J. Hydrog. Energy. 42, 11364–11371 (2017)

    Article  Google Scholar 

  19. G. Song, C. Luo, Q. Fu, C. Pan, RSC Adv. 6, 84035–84041 (2016)

    Article  Google Scholar 

  20. S. Bagheri, N.M. Julkapli, Rev. Inorg. Chem. 37, 11–28 (2017)

    Article  Google Scholar 

  21. H. Hou, L. Wang, F. Gao, G. Wei, J. Zheng, B. Tang, W. Yang, Int. J. Hydrog. Energy. 39, 6837–6844 (2014)

    Article  Google Scholar 

  22. U. Shaislamov, B.L. Yang, Int. J. Hydrog. Energy. 38, 14180–14188 (2013)

    Article  Google Scholar 

  23. S.G. Kumar, L.G. Devi, J. Phys. Chem. A. 115, 13211–13241 (2011)

    Article  Google Scholar 

  24. G. Nagaraju, T.N. Ravishankar, K. Manjunatha, S. Sarkar, H. Nagabhushana, R. Goncalves, J. Dupont, Mater. Lett. 109, 27–30 (2013)

    Article  Google Scholar 

  25. M. Krishnappa, R.T. Nanjundaiah, G. Renato, D. Jairton, S. Sharma, R. Thippeswamy, G. Nagaraju, Int. J. Latest Technol. Eng. Manag. Appl. Sci. (2014) ISSN 2278–2540

  26. G. Nagaraju, Udayabhanu, J.P. Shubha, K. Manjunath, J. Dupont, Int. J. Hydrog. Energy. 43, 4028–4035 (2018)

    Article  Google Scholar 

  27. T.N. Ravishankar, T. Ramakrishnappa, H. Nagabhushana, V.S. Souza, J. Dupont, G. Nagaraju, N. J. Chem. 39, 1421–1429 (2015)

    Article  Google Scholar 

  28. Y. Wang, L. Li, X. Huang, Q. Li, G. Li, RSC Adv. 5, 34302–34313 (2015)

    Article  Google Scholar 

  29. H. Zhang, J.F. Banfield, J. Phys. Chem. B. 104, 3481–3487 (2000)

    Article  Google Scholar 

  30. J. Kiefer, J. Fries, A. Leipertz, Appl. Spectrosc. 61, 1306–1311 (2007)

    Article  Google Scholar 

  31. H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37, 33–38 (2005)

    Article  Google Scholar 

  32. K. Huo, X. Zhang, J. Fu, G. Qian, Y. Xin, B. Zhu, H. Ni, P.K. Chu, J. Nanosci. Nanotechnol. 9, 3341–3346 (2009)

    Article  Google Scholar 

  33. M. Šćepanović, M. Grujić-Brojčin, M. Mirić, Z. Dohčević-Mitrović, Z.V. Popović, Acta Phys. Pol. A. 116, 603–606 (2009)

    Article  Google Scholar 

  34. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. fís. 53, 18–22 (2007)

    Google Scholar 

  35. V.P. Kubelka, Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  36. C. Shivakumara, R. Saraf, P. Halappa, Dyes Pigment. 126, 154–164 (2016)

    Article  Google Scholar 

  37. M.G. Ju, G. Sun, J. Wang, Q. Meng, W.Z. Liang, ACS Appl. Mater. Interfaces. 6, 12885–12892 (2014)

    Article  Google Scholar 

  38. D. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C. Richard, A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798–801 (2013)

    Article  Google Scholar 

  39. R.A. Rather, S. Singh, B. Pal Solar Energy Mater. Solar Cells. 160, 463–469 (2017)

    Article  Google Scholar 

  40. D.P. Kumar, N.L. Reddy, M.M. Kumari, B. Srinivas, V.D. Kumari, B. Sreedhar, V. Roddatis, O. Bondarchuk, M. Karthik, B. Neppolian, M.V. Shankar, Solar Energy Mater. Solar Cells. 136, 157–166 (2015)

    Article  Google Scholar 

  41. Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu, X. Miao, P. Feng, Z. Sun, Nano Res. 8, 4061–4071 (2015)

    Article  Google Scholar 

  42. D.P. Kumar, V.D. Kumari, M. Karthik, M. Sathish, M.V. Shankar, Solar Energy Mater. Solar Cells. 163, 113–119 (2017)

    Article  Google Scholar 

  43. P. Khemthong, P. Photai, N. Grisdanurak, Int. J. Hydrog. Energy. 38, 15992–16001 (2013)

    Article  Google Scholar 

  44. M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al-Dey, Y. Lai, J. Mater. Chem. A. 4, 6772–6801 (2016)

    Article  Google Scholar 

  45. R.S. Chen, C.A. Chen, W.C. Wang, H.Y. Tsai, Y.S. Huang, Appl. Phys. Lett. 99, 222107 (2011)

    Article  Google Scholar 

  46. R.S. Chen, C.A. Chen, H.Y. Tsai, W.C. Wang, Y.S. Huang, Appl. Phys. Lett. 100, 123108 (2012)

    Article  Google Scholar 

  47. R.S. Chen, Y.L. Liu, C.H. Chan, Y.S. Huang, Appl. Phys. Lett. 105, 153107 (2014)

    Article  Google Scholar 

  48. R.S. Chen, C.A. Chen, H.Y. Tsai, W.C. Wang, Y.S. Huang, J. Phys. Chem. C. 116, 4267–4272 (2012)

    Article  Google Scholar 

  49. U.K. Thakur, A.M. Askar, R. Kisslinger, B.D. Wiltshire, P. Kar, K. Shankar, Nanotechnology. 28, 274001 (2017)

    Article  Google Scholar 

  50. A. Mohammadpour, B. Wiltshire, Y. Zhang, S. Farsinezhad, A. Askar, R. Kisslinger, Y. Ren, P. Kar, K. Shankar, Nanotechnology. 28, 144001 (2017)

    Article  Google Scholar 

  51. A. Mohammadpour, S. Farsinezhad, B.D. Wiltshire, K. Shankar, Phys. Status Solidi Rapid Res. Lett. 8, 512–6 (2014)

Download references

Acknowledgements

Dr. G. Nagaraju and Manukumar K.N. greatly thank ISRO-RESPOND (Project No. ISRO/RES/3/661/2014-15 Dated 14-07-2014) Govt. of India for sanctioning the project and financial assistance. Also acknowledges DST-Nanomission (SR/NM/NS-1262/2013), Govt. of India, New Delhi, for financial support to procure X-ray diffractoemter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manukumar, K.N., Nagaraju, G., Praveen Kumar, D. et al. Facile ionothermal synthesis of TiO2 nanorods for photocatalytic H2 generation. J Mater Sci: Mater Electron 30, 1076–1083 (2019). https://doi.org/10.1007/s10854-018-0376-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0376-3

Navigation