Skip to main content

Advertisement

Log in

Prussian blue derived metal oxides/graphene foam as anode materials for high-performance lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal oxides have received much attention recently in the field of lithium-ion batteries (LIBs) because of high specific capacities. The combination between metal oxides and carbonaceous materials is an effective approach to improve the LIBs properties. In this contribution, Prussian blue (PB) particles with two different morphologies were loaded on the surface of graphene foam (GF) by a solution impregnation method, and then the Fe2O3/GF composites were obtained after the calcination of PB/GF precursors. The as-prepared Fe2O3/GF products exhibit superior electrochemical properties towards LIBs, and the specific capacity of 645 mA h g−1 can be obtained at 100 mA g−1 even after 200 cycles. The outstanding LIBs performance for the composite can be attributed to the synergistic effect between GF and metal oxides, in which Fe2O3 contributes a high specific capacity, whereas GF improves the electrical conductivity and cycle stability. The relationship between the morphologies of metal oxides and lithium storage properties was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Li, J. Lu, Z.W. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018)

    Article  Google Scholar 

  2. J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Article  Google Scholar 

  3. H. Tabassum, R. Zou, A. Mahmood, Z.B. Liang, Q.F. Wang, H. Zhang, S. Gao, C. Qu, W.H. Guo, S.J. Guo, A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N Co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 30, 1705441 (2018)

    Article  Google Scholar 

  4. B.Y. Guan, X.Y. Yu, H.B. Wu, X.W.D. Lou, Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29, 1703614 (2017)

    Article  Google Scholar 

  5. S.S. Zheng, X.R. Li, B.Y. Yan, Q. Hu, Y.X. Xu, X. Xiao, H.G. Xue, H. Pang, Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 7, 1602733 (2017)

    Article  Google Scholar 

  6. W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015)

    Article  Google Scholar 

  7. J.P. Wang, H. Zhou, M.Z. Zhu, A.H. Yuan, X.P. Shen, Metal-organic framework-derived Co3O4 covered by MoS2 nanosheets for high-performance lithium-ion batteries. J. Alloy. Compd. 744, 220–227 (2018)

    Article  Google Scholar 

  8. J.W. Nai, X.W.D. Lou, Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706825

    Google Scholar 

  9. D. Aguila, Y. Prado, E.S. Koumousi, C. Mathoniere, R. Clerac, Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203–224 (2016)

    Article  Google Scholar 

  10. G.Z. Fang, J. Zhou, C.W. Liang, A.Q. Pan, C. Zhang, Y. Tang, X.P. Tan, J. Liu, S.Q. Liang, MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26, 57–65 (2016)

    Article  Google Scholar 

  11. G. Huang, F.F. Zhang, X.C. Du, Y.L. Qin, D.M. Yin, L.M. Wang, Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9, 1592–1599 (2015)

    Article  Google Scholar 

  12. G.H. Zhang, S.C. Hou, H. Zhang, W. Zeng, F.L. Yan, C.C. Li, H.G. Duan, High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27, 2400–2405 (2015)

    Article  Google Scholar 

  13. T.C. Jiang, F.X. Bu, X.X. Feng, I. Shakir, G.L. Hao, Y.X. Xu, Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11, 5140–5147 (2017)

    Article  Google Scholar 

  14. D. Ji, H. Zhou, Y.L. Tong, J.P. Wang, M.Z. Zhu, T.H. Chen, A.H. Yuan, Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem. Eng. J. 313, 1623–1632 (2017)

    Article  Google Scholar 

  15. J.X. Shao, H. Zhou, M.Z. Zhu, J.H. Feng, A.H. Yuan, Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries. J. Alloy. Compd. 768, 1049–1057 (2018)

    Article  Google Scholar 

  16. W. Wen, J.M. Wu, Y.Z. Jiang, L.L. Lai, J. Song, Pseudocapacitance-enhanced Li-ion microbatteries derived by a TiN@TiO2 nanowire anode. Chem 2, 404–416 (2017)

    Article  Google Scholar 

  17. M.Z. Zhu, H. Zhou, J.X. Shao, J.H. Feng, A.H. Yuan, Prussian blue nanocubes supported on graphene foam as superior binder-free anode of lithium-ion batteries. J. Alloy. Compd. 749, 811–817 (2018)

    Article  Google Scholar 

  18. D. Ji, H. Zhou, J. Zhang, Y.Y. Dan, H.X. Yang, A.H. Yuan, Facile synthesis of metal-organic framework-derived Mn2O3 nanowires coated three-dimensional graphene network for highperformance free-standing supercapacitor electrodes. J. Mater. Chem. A 4, 8283–8290 (2016)

    Article  Google Scholar 

  19. J.C. Pramudita, S. Schmid, T. Godfrey, T. Whittle, M. Alam, T. Hanley, H.E.A. Brand, N. Sharma, Sodium uptake in cell construction and subsequent in operando electrode behaviour of Prussian blue analogues, Fe[Fe(CN)6]1–x·yH2O and FeCo(CN)6. Phys. Chem. Chem. Phys. 16, 24178–24187 (2014)

    Article  Google Scholar 

  20. L. Shen, Z.X. Wang, L.Q. Chen, Prussian blues as a cathode material for lithium ion batteries. Chem. Eur. J. 20, 12559–12562 (2014)

    Article  Google Scholar 

  21. J.B. Ayers, W.H. Piggs, Synthesis and properties of two series of heavy metal hexacyanoferrates. J. Inorg. Nucl. Chem. 33, 721–733 (1971)

    Article  Google Scholar 

  22. R.E. Wilde, S.N. Ghosh, B. Marshall, Prussian blues. Inorg. Chem. 9, 2512–2516 (1970)

    Article  Google Scholar 

  23. K. Itaya, I. Uchida, V.D. Neff, Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19, 162–168 (1986)

    Article  Google Scholar 

  24. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  Google Scholar 

  25. P. Bhattacharya, M. Kota, D.H. Suh, K.C. Roh, H.S. Park, Biomimetric spider-web-like composites for enhanced rate capability and cycle life of lithium ion battery anodes. Adv. Energy Mater. 7, 1700331 (2017)

    Article  Google Scholar 

  26. X. Qi, H.B. Zhang, J. Xu, X. Wu, D. Yang, J. Qu, Z.Z. Yu, Highly-quality graphene sheets and sandwich-structured alpha-Fe2O3/graphene hybrids for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 11025–11034 (2017)

    Article  Google Scholar 

  27. R. Mohan, R. Paulose, An efficient electrochemical performance of Fe2O3/CNT nanocomposite coated dried Lagenaria siceraria shell electrode for electrochemical capacitor. Ceram. Int. 44, 10990–10993 (2018)

    Article  Google Scholar 

  28. S.K. Patel, S.H. Choi, Y.C. Kang, J.K. Lee, Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8, 6728–6738 (2016)

    Article  Google Scholar 

  29. J.X. Zhu, Z.Y. Yin, D. Yang, T. Sun, H. Yu, H.E. Hoster, H.H. Hng, H. Zhang, Q.Y. Yan, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 6, 987 (2013)

    Article  Google Scholar 

  30. Y. Jin, L.Y. Dang, H. Zhang, C. Song, Q.Y. Lu, F. Gao, Synthesis of unit-cell-thick α-Fe2O3 nanosheets and their transformation to γ-Fe2O3 nanosheets with enhanced LIB performances. Chem. Eng. J. 326, 292–297 (2017)

    Article  Google Scholar 

  31. J.K. Meng, L. Fu, Y.S. Liu, G.P. Zheng, X.C. Zheng, X.X. Guan, J.M. Zhang, Gas-liquid interfacial assembly and electrochemical properties of 3D highly dispersed α-Fe2O3@graphene aerogel composites with a hierarchical structure for applications in anodes of lithium ion batteries. Electrochim. Acta 224, 40–48 (2017)

    Article  Google Scholar 

  32. J.S. Luo, J.L. Liu, Z.Y. Zeng, C.F. Ng, L.J. Ma, H. Zhang, J.Y. Lin, Z.X. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13, 6136–6143 (2013)

    Article  Google Scholar 

  33. W.T. Qiu, M.S. Balogun, Y. Luo, K.Q. Chen, Y.K. Zhu, X.J. Xiao, X.H. Lu, P. Liu, Y.X. Tong, Three-dimensional Fe3O4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries. Electrochim. Acta 193, 32–38 (2016)

    Article  Google Scholar 

  34. F.N. Lin, H. Wang, G. Wang, Facile synthesis of hollow polyhedral (cubic, octahedral and dodecahedral) NiO with enhanced lithium storage capabilities. Electrochim. Acta 211, 207–216 (2016)

    Article  Google Scholar 

  35. R.M. Gao, Z. Jiao, Y. Wang, L.Q. Xu, S.S. Xia, H.J. Zhang, Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries. Chem. Eng. J. 304, 156–164 (2016)

    Article  Google Scholar 

  36. C. Wang, Q. Li, F.F. Wang, G.F. Xia, R.Q. Liu, D.Y. Li, N. Li, J.S. Spendelow, G. Wu, Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl. Mater. Int. 6, 1243–1250 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51672114), Natural Science Foundation of Jiangsu Province, China (BK20151328, BK20161357), Foundation from Marine Equipment and Technology Institute for Jiangsu University of Science and Technology, China (HZ20180004), and the project of the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Zhou or Aihua Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1028 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Feng, J., Zhu, M. et al. Prussian blue derived metal oxides/graphene foam as anode materials for high-performance lithium-ion batteries. J Mater Sci: Mater Electron 30, 982–990 (2019). https://doi.org/10.1007/s10854-018-0367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0367-4

Navigation