Skip to main content
Log in

In situ fluorine doped ZrO2−x nanotubes for efficient visible light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The F-doped ZrO2−x nanotubes are synthesized by anodic oxidization in a F-containing electrolyte and following a low temperature annealing process. The F-doped ZrO2−x nanotubes exhibit a dramatic increase in visible light absorption and efficient visible light photocatalytic activity which are not possessed to normalized ZrO2. The fluorine in anodic ZrO2 nanotubes plays a vital role in the formation of abundant anion vacancies during the annealing. Combining the doping effect of the residual fluorine element, the band gap of the F-doped ZrO2−x nanotubes reduced from 5.13 to 2.35 eV. Moreover, the transient photocurrent response plots and the photocatalytic experiments reveal the highly effective electrons–holes separation of the F-doped ZrO2−x nanotubes and enhanced visible-light photocatalytic degradation for RhB. The degradation rate of RhB in the presence of the F-doped ZrO2−x nanotubes catalyst has reached up to 83% under 2 h low-power LED light irradiation. In addition, the possible photocatalytic mechanism of the F-doped ZrO2−x nanotubes has been proposed via studying the band structure. It is believed that the F-doped ZrO2−x nanotubes will have a bright future for sustainable energy sources and cleaning environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.L. Kustov, S.B. Rasmussen, R. Fehrmann, P. Simonsen, Activity and deactivation of sulphated TiO2- and ZrO2-based V, Cu, and Fe oxide catalysts for No abatement in alkali containing flue gases. Appl. Catal. B 76, 9–14 (2007)

    Article  Google Scholar 

  2. C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram. Int. 44, 6940–6948 (2018)

    Article  Google Scholar 

  3. J.L. Zhao, X.X. Wang, L.B. Zhang, X.R. Hou, Y. Li, C.C. Tang, Degradation of methyl orange through synergistic effect of zirconia nanotubes and ultrasonic wave. J. Hazard. Mater. 188, 231–234 (2011)

    Article  Google Scholar 

  4. W.Y. Hu, W. Zhou, K.F. Zhang, X.C. Zhang, L. Wang, B.J. Jiang, G.H. Tian, D.Y. Zhao, H.G. Fu, Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. A 4, 7495–7502 (2016)

    Article  Google Scholar 

  5. O. Elbanna, P. Zhang, M. Fujitsuka, T. Majima, Facile preparation of nitrogen and fluorine codoped TiO2 mesocrystal with visible light photocatalytic activity. Appl. Catal. B 192, 80–87 (2016)

    Article  Google Scholar 

  6. T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R.A. Varin, F. Gu, Photocatalytic activity of hydrogenated TiO2. ACS Appl. Mater. Interfaces 5, 1892–1895 (2013)

    Article  Google Scholar 

  7. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of Zno. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)

    Article  Google Scholar 

  8. X. An, C. Hu, H. Liu, J. Qu, Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution. J. Mater. Chem. A 5, 24989–24994 (2017)

    Article  Google Scholar 

  9. S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye (2017) Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 29, 1701774

    Article  Google Scholar 

  10. S. Kouva, K. Honkala, L. Lefferts, J. Kanervo, Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal. Sci. Technol. 5, 3473–3490 (2015)

    Article  Google Scholar 

  11. O.A. Syzgantseva, M. Calatayud, C. Minot, Revealing the surface reactivity of zirconia by periodic DFT calculations. J. Phys. Chem. C 116, 6636–6644 (2012)

    Article  Google Scholar 

  12. A. Sinhamahapatra, J.-P. Jeon, J. Kang, B. Han, J.-S. Yu, Oxygen-deficient zirconia (ZrO2–x): a new material for solar light absorption. Sci. Rep. 6, 27218 (2016)

    Article  Google Scholar 

  13. K. Gurushantha, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, C. Shivakumara, H.P. Nagaswarupa, S.C. Prashantha, M.R. Anilkumar, Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: structural, photocatalytic and photoluminescent properties. J. Mol. Catal. A 397, 36–47 (2015)

    Article  Google Scholar 

  14. L. Renuka, K.S. Anantharaju, S.C. Sharma, H.P. Nagaswarupa, S.C. Prashantha, H. Nagabhushana, Y.S. Vidya, Hollow microspheres Mg-doped ZrO2 nanoparticles: green assisted synthesis and applications in photocatalysis and photoluminescence. J. Alloy. Compd. 672, 609–622 (2016)

    Article  Google Scholar 

  15. C. Gionco, M.C. Paganini, E. Giamello, O. Sacco, V. Vaiano, D. Sannino, Rare earth oxides in zirconium dioxide: how to turn a wide band gap metal oxide into a visible light active photocatalyst. J. Energy Chem. 26, 270–276 (2017)

    Article  Google Scholar 

  16. C. Gionco, M.C. Paganini, M. Chiesa, S. Maurelli, S. Livraghi, E. Giamello (2015) Cerium doped zirconium dioxide as a potential new photocatalytic material. The role of the preparation method on the properties of the material. Appl. Catal. A 504, 338–343

    Article  Google Scholar 

  17. S.M. El-Dafrawy, M. Farag, S.M. Hassan, Photodegradation of organic compounds using chromium oxide-doped nano-sulfated zirconia. Res. Chem. Intermed. 43, 6343–6365 (2017)

    Article  Google Scholar 

  18. H. Sudrajat, S. Babel, Comparison and mechanism of photocatalytic activities of N-Zno and N-ZrO2 for the degradation of rhodamine 6G. Environ. Sci. Pollut. Res. 23, 10177–10188 (2016)

    Article  Google Scholar 

  19. E. Bailon-Garcia, A. Elmouwahidi, F. Carrasco-Marin, A.F. Perez-Cadenas, F.J. Maldonado-Hodar, Development of carbon-ZrO2 composites with high performance as visible-light photocatalysts. Appl. Catal. B 217, 540–550 (2017)

    Article  Google Scholar 

  20. E.S. Agorku, A.T. Kuvarega, B.B. Mamba, A.C. Pandey, A.K. Mishra, Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine. J. Rare Earths 33, 498–506 (2015)

    Article  Google Scholar 

  21. M.V. Dozzi, A. Zuliani, I. Grigioni, G.L. Chiarello, L. Meda, E. Selli, Photocatalytic activity of one step flame-made fluorine doped TiO2. Appl. Catal. A 521, 220–226 (2016)

    Article  Google Scholar 

  22. M.A. Lara, M.J. Sayagues, J.A. Navio, M.C. Hidalgo, A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure. J. Mater. Sci. 53, 435–446 (2018)

    Article  Google Scholar 

  23. A.W. Amer, M.A. El-Sayed, N.K. Allam, Tuning the photoactivity of zirconia nanotubes-based photoanodes via ultrathin layers of ZrN: an effective approach toward visible-light water splitting. J. Phys. Chem. C 120, 7025–7032 (2016)

    Article  Google Scholar 

  24. W. Jiang, J. He, J. Zhong, J. Lu, S. Yuan, B. Liang, Preparation and photocatalytic performance of ZrO2 nanotubes fabricated with anodization process. Appl. Surf. Sci. 307, 407–413 (2014)

    Article  Google Scholar 

  25. K. Lv, B. Cheng, J. Yu, G. Liu, Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 14, 5349–5362 (2016)

    Article  Google Scholar 

  26. T. Tanuma, H. Okamoto, K. Ohnishi, S. Morikawa, T. Suzuki, Activated zirconium oxide catalysts to synthesize dichloropentafluoropropane by the reaction of dichlorofluoromethane with tetrafluoroethylene. Appl. Catal. A 359, 158–164 (2009)

    Article  Google Scholar 

  27. A.P. Gaikwad, C.A. Betty, D. Tyagi, R. Rao, A.K. Tripathi, R. Sasikala, In situ formation of surface sulfide species and its role in enhancing the photocatalytic and photoelectrochemical properties of wide bandgap ZrO2. Mol. Catal. 435, 128–134 (2017)

    Article  Google Scholar 

  28. S.D. Wolter, J.R. Piascik, B.R. Stoner, Characterization of plasma fluorinated zirconia for dental applications by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 257, 10177–10182 (2011)

    Article  Google Scholar 

  29. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766–5774 (2013)

    Article  Google Scholar 

  30. A. Dankeaw, G. Poungchan, M. Panapoy, B. Ksapabutr, In-situ one-step method for fabricating three-dimensional grass-like carbon-doped ZrO2 films for room temperature alcohol and acetone sensors. Sens. Actuators B 242, 202–214 (2017)

    Article  Google Scholar 

  31. Z. Pu, Y. Liu, H. Zhou, W. Huang, Y. Zheng, X. Li, Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts. Appl. Surf. Sci. 422, 85–93 (2017)

    Article  Google Scholar 

  32. J.H. Park, J.Y. Oh, S.W. Han, T.I. Lee, H.K. Baik, Low-temperature, solution-processed ZrO2:B thin film: a bifunctional inorganic/organic interfacial glue for flexible thin-film transistors. ACS Appl. Mater. Interfaces 7, 4494–4503 (2015)

    Article  Google Scholar 

  33. S. Liu, X. Wu, W. Liu, W. Chen, R. Ran, M. Li, D. Weng, Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J. Catal. 337, 188–198 (2016)

    Article  Google Scholar 

  34. L. Wang, K. Marcus, X. Huang, Z. Shen, Y. Yang, Y. Bi (2018) Dual effects of nanostructuring and oxygen vacancy on photoelectrochemical water oxidation activity of superstructured and defective hematite nanorods. Small 14, 1704464

    Article  Google Scholar 

  35. F. Chen et al., Novel ternary heterojunction photocatalyst of Ag nanoparticles and g-C3N4 nanosheets Co-modified Bivo4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B 205, 133–147 (2017)

    Article  Google Scholar 

  36. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)

    Article  Google Scholar 

  37. L. Shi, Z. Li, T.D. Dao, T. Nagao, Y. Yang, A synergistic interaction between isolated Au nanoparticles and oxygen vacancies in an amorphous black TiO2 nanoporous film: toward enhanced photoelectrochemical water splitting. J. Mater. Chem. A 6, 12978–12984 (2018)

    Article  Google Scholar 

  38. Y. Jiaguo, W. Wenguang, C. Bei, S. Bao-Lian, Enhancement of photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C 113, 6743–6750 (2009)

    Article  Google Scholar 

  39. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)

    Article  Google Scholar 

  40. S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 10, 73 (2015)

    Article  Google Scholar 

  41. N.A. Lange, J.A. Dean, Lange’s Handbook of Chemistry, (McGraw-Hill, New York, 1999), p 1.171

    Google Scholar 

  42. M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007)

    Article  Google Scholar 

  43. A.K. Kulkarni, C.S. Praveen, Y.A. Sethi, R.P. Panmand, S.S. Arbuj, S.D. Naik, A.V. Ghule, B.B. Kale, Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 46, 14859–14868 (2017)

    Article  Google Scholar 

  44. J. Liu, H. Xu, Y. Xu, Y. Song, J. Lian, Y. Zhao, L. Wang, L. Huang, H. Ji, H. Li, Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. Appl. Catal. B 207, 429–437 (2017)

    Article  Google Scholar 

  45. J.-J. Li, B. Weng, S.-C. Cai, J. Chen, H.-P. Jia, Y.-J. Xu, Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. J. Hazard. Mater. 342, 661–669 (2018)

    Article  Google Scholar 

  46. G. Huang, R. Shi, Y. Zhu, Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution. J. Mol. Catal. A 348, 100–105 (2011)

    Article  Google Scholar 

  47. X. Zhang, Y. Wu, Y. Huang, Z. Zhou, S. Shen, Reduction of oxygen vacancy and enhanced efficiency of perovskite solar cell by doping fluorine into TiO2. J. Alloy. Compd. 681, 191–196 (2016)

    Article  Google Scholar 

  48. M. Du, B. Qiu, Q. Zhu, M. Xing, J. Zhang (2018) Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catal. Today. https://doi.org/10.1016/j.cattod.2018.03.066

    Google Scholar 

  49. A. Al-Keisy, L. Ren, T. Zheng, X. Xu, M. Higgins, W. Hao, Y. Du, Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi4(SiO4)3/Bi2SiO5 nanostructures. Dalton Trans. 46, 15582–15588 (2017)

    Article  Google Scholar 

  50. J. Ding, Z. Dai, F. Qin, H. Zhao, S. Zhao, R. Chen, Z-scheme BiO1-XBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl. Catal. B 205, 281–291 (2017)

    Article  Google Scholar 

  51. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)

    Article  Google Scholar 

  52. X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016)

    Article  Google Scholar 

  53. Z. Xiu, H. Bo, Y. Wu, X. Hao, Graphite-Like C3N4 modified Ag3PO4 nanoparticles with highly enhanced photocatalytic activities under visible light irradiation. Appl. Surf. Sci. 289, 394–399 (2014)

    Article  Google Scholar 

Download references

Funding

This study was funded by the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wulin Yang or Lingping Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Yang, W., Zhu, J. et al. In situ fluorine doped ZrO2−x nanotubes for efficient visible light photocatalytic activity. J Mater Sci: Mater Electron 30, 701–710 (2019). https://doi.org/10.1007/s10854-018-0339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0339-8

Navigation