Skip to main content
Log in

The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rod-like α-MnO2 and β-MnO2 were obtained successfully by hydrothermal method under different temperatures. The as-prepared samples have been characterized by XRD, SEM, TG, TEM and HRTEM. The β-MnO2 was obtained under the condition of 150 °C and 220 °C, and the crystallinity of 220 °C would be better, the α-MnO2 was synthesize at 180 °C. The thermal stabilities of manganese oxide were affected by their crystal phases. The microwave absorption properties of rod-like α-MnO2 and β-MnO2 were studied at 2.0–18.0 GHz, and β-MnO2 show much better absorption properties than α-MnO2. The β-MnO2 prepared under the condition of 220 °C presents the optimal microwave absorption properties with the RL values of − 25.5 dB at 14.7 GHz, a thickness of 1.5 mm and an effective bandwidth of 5.0 GHz (13–18.0 GHz). These results indicate that MnO2 were dielectric loss materials, their absorption properties were influenced by the crystal phase, morphological size and crystallinity significantly. Special rod-like morphology and good crystallinity lead to superior impedance matching and moderate attenuation constant, α, and eventually enhanced microwave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Wang, Z.M. Dang, Appl. Phys. Lett. 87, 282–284 (2005)

    Google Scholar 

  2. W.T. Wang, Q.L. Li, C.B. Chang, Synth. Met. 161, 44–50 (2011)

    Article  Google Scholar 

  3. F.S. Wen, F. Zhang, Z. Liu, J. Phys. Chem. C 115, 14025–14030 (2011)

    Article  Google Scholar 

  4. C.W. Qiang, J.C. Xu, Z.Q. Zhang, L.L. Tian, S.T. Xiao, Y. Liu, P. Xu, J. Alloys Compd. 506, 93–97 (2010)

    Article  Google Scholar 

  5. M.G. Chen, Y. Zhu, H.M. Kou, H. Xu, J.K. Guo, Mater. Des. 32, 3013–3016 (2011)

    Article  Google Scholar 

  6. Y. Liu, Z.Q. Zhang, S.T. Xiao, C.W. Qiang, L.L. Tian, J.C. Xu, Appl. Surf. Sci. 257, 7678–7683 (2011)

    Article  Google Scholar 

  7. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Appl. Phys. Lett. 92, 301 (2008)

    Google Scholar 

  8. P. Xu, X.J. Han, C. Wang, D.H. Zhou, Z.S. Lv, A.H. Wen, X.H. Wang, B. Zhang, J. Phys. Chem. B 112, 10443–10448 (2008)

    Article  Google Scholar 

  9. C.K. Cui, Y.C. Du, T.H. Li, X.Y. Zheng, X.H. Wang, X.J. Han, P. Xu, J. Phys. Chem. B 116, 9523–9531 (2012)

    Article  Google Scholar 

  10. G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, C.W. Hu, Chem. Mater. 23, 1587–1593 (2011)

    Article  Google Scholar 

  11. R. Zhao, K. Jia, J.J. Wei, J.X. Pu, X.B. Liu, Mater. Lett. 64, 457–459 (2010)

    Article  Google Scholar 

  12. S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, D.Y. He, J. Phys. D 42, 055004 (2009)

    Article  Google Scholar 

  13. S.B. Ni, X.L. Sun, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, D.Y. He, Mater. Chem. Phys. 124, 353–358 (2010)

    Article  Google Scholar 

  14. V. Sunny, P. Kurian, P. Mohanan, P.A. Joy, M.R. Anantharaman, J. Alloys Compd. 489, 297–303 (2010)

    Article  Google Scholar 

  15. C. Singh, S.B. Narang, I.S. Hudiara, K. Sudheendran, K.C.J. Raju, J. Magn Magn Mater. 320, 1657–1665 (2008)

    Article  Google Scholar 

  16. P. Yuan, T. Xia, J. Zhai, J.F. Chen, Mater. Sci. Eng. B 176, 163–166 (2011)

    Article  Google Scholar 

  17. A. Maqsood, K. Khan, J. Alloys Compd. 509, 3393–3397 (2011)

    Article  Google Scholar 

  18. W. Xiao, D.L. Wang, X.W. Lou, J. Phys. Chem. C 114, 1430–1434 (2009)

    Google Scholar 

  19. V.B. Boppana, F. Jiao, Chem. Commun. 47, 8973–8975 (2011)

    Article  Google Scholar 

  20. M.W. Xu, L.B. Kong, W.J. Zhou, H.L. Li, J. Phys. Chem. C 112, 19141–19147 (2007)

    Article  Google Scholar 

  21. X.X. He, M.Y. Yang, P. Ni, Y. Li, Z.H. Liu, Colloid Surf. A 363, 64–70 (2010)

    Article  Google Scholar 

  22. O. Ghodbane, J.L. Pascal, F. Favier, ACS Appl. Mater. Interfaces 1, 1130–1139 (2009)

    Article  Google Scholar 

  23. A.J. Roberts, R.C.T. Slade, J. Mater. Chem. 20, 3221–3226 (2010)

    Article  Google Scholar 

  24. H.Q. Wang, G.F. Yang, Q.Y. Li, X.X. Zhong, F.P. Wang, Z.S. Li, Y.H. Li, New J. Chem. 35, 469–475 (2011)

    Article  Google Scholar 

  25. J.H. Zeng, Y.F. Wang, Y. Yang, J. Zhang, J. Mater. Chem. 20, 10915–10918 (2010)

    Article  Google Scholar 

  26. J.Z. Zhao, Z.L. Tao, J. Liang, J. Chen, Cryst. Growth Des. 8, 2799–2805 (2008)

    Article  Google Scholar 

  27. Y.P. Duan, Y. Yang, M. He, S.H. Liu, X.D. Cui, H.F. Chen, J. Phys. D 41, 1854–1862 (2008)

    Article  Google Scholar 

  28. Y.P. Duan, Z. Jia, J. Hui, S.H. Liu, J. Solid State Chem. 184, 1165–1171 (2011)

    Article  Google Scholar 

  29. J. Hui, Y.P. Duan, L. Zhuo, Z. Jia, S.H. Liu, Phys. B 407, 971–977 (2012)

    Article  Google Scholar 

  30. J. Zhang, Y.P. Duan, S.Q. Li, X.G. Li, S.H. Liu, J. Solid State Chem. 183, 1490–1495 (2010)

    Article  Google Scholar 

  31. Y.P. Duan, H. Ma, X.G. Li, S.H. Liu, Z.J. Ji, Phys. B 405, 1826–1831 (2010)

    Article  Google Scholar 

  32. J.J. Hu, Y.P. Duan, J. Zhang, J. Hui, S.H. Liu, W.P. Li, Phys. B 406, 1950–1955 (2011)

    Article  Google Scholar 

  33. M. Zhou, X. Zhang, J.M. Wei, S.L. Zhao, L. Wang, B.X. Feng, J. Phys. Chem. C 115, 1398–1402 (2013)

    Article  Google Scholar 

  34. D. Yan, S. Cheng, R.F. Zhuo, J.T. Chen, J.J. Feng, H.T. Feng, H.J. Li, Z.G. Wu, J.W. Wang, P.X. Yan, Nanotechnology 20, 105706 (2009)

    Article  Google Scholar 

  35. H.T. Guan, C. Gang, S.B. Zhang, Y.D. Wang, Mater. Chem. Phys. 124, 639–645 (2010)

    Article  Google Scholar 

  36. B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, R. Zhang, Phys. Chem. Chem. Phys. 17, 6044–6052 (2015)

    Article  Google Scholar 

  37. H.J. Kim, J.B. Lee, Y.M. Kim, M.H. Jung, Z. Jaglicic, P. Umek, J. Dolinsek, Nanoscale Res. Lett. 2, 81–86 (2007)

    Article  Google Scholar 

  38. R. Giovanoli, Thermochim. Acta 234, 303–313 (1994)

    Article  Google Scholar 

  39. Q.W. Li, G.A. Luo, J. Li, X. Xia, J. Mater. Process. Tech 137, 25–29 (2003)

    Article  Google Scholar 

  40. X. Zhang, W.S. Yang, J.J. Yang, D.G. Evans, J. Cryst. Growth 310, 716–722 (2008)

    Article  Google Scholar 

  41. X. Wang, Y.D. Li, Chem. Commun. 7, 764–765 (2002)

    Article  Google Scholar 

  42. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, W.B. Wang, K.K. Su, Q.Y. Zhang, J. Alloys Compd. 693, 432–439 (2017)

    Article  Google Scholar 

  43. H.L. Lv, X.H. Liang, Y. Cheng, H.Q. Zhang, D.M. Tang, B.S. Zhang, G.B. Ji, Y.W. Du, ACS Appl. Mater. Interfaces 7, 4744–4750 (2015)

    Article  Google Scholar 

  44. B. Zhao, X.Q. Guo, W.Y. Zhao, J.S. Deng, S. Gang, B.B. Fan, Z.Y. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8, 28917–28925 (2016)

    Article  Google Scholar 

  45. X. Xia, Battery Bimon. 34, 411–414 (2004)

    Google Scholar 

  46. H.T. Guan, G. Chen, J. Zhu, Y.D. Wang, J. Alloys Compd. 507, 126–132 (2010)

    Article  Google Scholar 

  47. B. Quan, X.H. Liang, G.B. Ji, J. Lv, S.S. Dai, G.Y. Xu, Y.W. Du, Carbon 129, 310–320 (2018)

    Article  Google Scholar 

  48. H.T. Guan, J.B. Xie, G. Chen, Y.D. Wang, Mater. Chem. Phys. 143, 1061–1068 (2014)

    Article  Google Scholar 

  49. B. Zhao, J.W. Liu, X.Q. Guo, W.Y. Zhao, L.Y. Liang, C. Ma, R. Zhang, Phys. Chem. Chem. Phys. 19, 9128–9136 (2017)

    Article  Google Scholar 

  50. B. Zhao, X.Q. Guo, Y.Y. Zhou, T.T. Su, C. Ma, R. Zhang, CrystEngComm 19, 2178–2186 (2017)

    Article  Google Scholar 

  51. J. Yang, J. Zhang, J.W. Liu, C.Y. Liang, M. Wang, M.M. Liu, R.C. Che, ACS Appl. Mater. Interfaces 5, 7146–7151 (2013)

    Article  Google Scholar 

  52. G.S. Wang, L.Z. Nie, S.H. Yu, RSC Adv. 2, 6216–6221 (2012)

    Article  Google Scholar 

  53. Q.M. Su, G.H. Du, J. Zhang, Y.J. Zhong, B.S. Xu, Y.H. Yang, S. Neupane, W.Z. Li, ACS Nano 8, 3620–3627 (2014)

    Article  Google Scholar 

  54. G.Z. Wang, X.G. Peng, L. Yu, G.P. Wan, S.W. Lin, Q. Yong, J. Mater. Chem. A 3, 2734–2740 (2015)

    Article  Google Scholar 

  55. B. Zhao, W.Y. Zhao, G. Shao, B.B. Fan, R. Zhang, ACS Appl. Mater. Interfaces 7, 12951–12960 (2015)

    Article  Google Scholar 

  56. Y. Cheng, Z.Y. Li, Y. Li, S.S. Dai, G.B. Ji, H.Q. Zhao, J.M. Cao, Y.W. Du, Carbon 127, 643–652 (2018)

    Article  Google Scholar 

  57. B. Quan, X.H. Liang, G.B. Ji, J.N. Ma, P.Y. Ouyang, H. Gong, G.Y. Xu, Y.W. Du, ACS Appl. Mater. Interfaces 9, 9964–9974 (2017)

    Article  Google Scholar 

  58. B. Quan, X.H. Liang, G.B. Ji, Y. Cheng, W. Liu, J.N. Ma, Y.N. Zhang, D.R. Li, G.Y. Xu, J. Alloys Compd. 728, 1065–1075 (2017)

    Article  Google Scholar 

  59. H.L. Lv, Z.H. Yang, P.L. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C. Xu, Adv. Mater. 30, 1706343 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (NSFC) (Grant No. 51602287), China Postdoctoral Science Foundation Grant (Grant No. 2016M602266) and Natural Science Research Project of Henan Educational Committee (Grant No. 17A430006). The authors would like to thank for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Zhao or Bingbing Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Zhao, B., Han, F. et al. The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties. J Mater Sci: Mater Electron 30, 475–484 (2019). https://doi.org/10.1007/s10854-018-0312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0312-6

Navigation