Skip to main content
Log in

Effect of rare element Ce doping concentration on resistive switching of HfOx film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The switching characteristics of rare element Ce-doped HfOx films were investigated. The effect of Ce doping on oxygen defects was analyzed by X-ray photoelectron spectroscopy (XPS) and first-principle calculations. The variations of valence state of Ce and oxygen vacancies with the increase of Ce doping concentration were demonstrated. Although Ce doping increased dopants-induced oxygen vacancies in HfOx film, the density of oxygen vacancies decreased as the doping concentration increased. Besides, the introduction of Ce dopants enlarged the difference in electronegativity of Hf and O which made it harder for O to escape from HfOx film under voltage. Hence the switching behaviors of Ce-doped HfOx film were affected by multiple factors and can be effectively improved with an appropriate doping concentration (4.3%). A physical model based on the formation and rupture of conductive filaments was proposed to clarify the switching behavior of Ce-doped HfOx samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.H. Yoon, K.M. Kim, S.J. Song, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, Y.J. Kwon, X. Shao, C.S. Hwang, Adv. Mater. 27, 3811 (2015)

    Article  Google Scholar 

  2. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016)

    Article  Google Scholar 

  3. Z. Wu, J. Zhu, X. Liu, J. Mater. Sci.: Mater. Electron. 28, 10625 (2017)

    Google Scholar 

  4. A. Harada, H. Yamaoka, R. Ogata, K. Watanabe, K. Kinoshita, S. Kishida, T. Nokami, T. Itoh, J. Mater. Chem. C 3, 6966 (2015)

    Article  Google Scholar 

  5. G. Ma, X. Tang, H. Zhang, Z. Zhong, X. Li, J. Li, H. Su, J. Mater. Sci. 52, 238 (2017)

    Article  Google Scholar 

  6. M. Akbari, M. Kim, D. Kim, J.-S. Lee, RSC Adv. 7, 16704 (2017)

    Article  Google Scholar 

  7. C. Hu, Q. Wang, S. Bai, M. Xu, D. He, D. Lyu, J. Qi, Appl. Phys. Lett. 110, 073501 (2017)

    Article  Google Scholar 

  8. C. Dou, K. Kakushima, P. Ahmet, K. Tsutsui, A. Nishiyama, N. Sugii, K. Natori, T. Hattori, H. Iwai, Microelectron. Reliab. 52, 688 (2012)

    Article  Google Scholar 

  9. K.X. Shi, H.Y. Xu, Z.Q. Wang, X.N. Zhao, W.Z. Liu, J.G. Ma, Y.C. Liu, Appl. Phys. Lett. 111, 223505 (2017)

    Article  Google Scholar 

  10. B. Zhang, V. Zima, T. Mikysek, V. Podzemna, P. Rozsival, T. Wagner, J. Mater. Sci.: Mater. Electron. (2018) https://doi.org/10.1007/s10854-018-9778-5

    Google Scholar 

  11. M.S. Lee, S. Choi, C.H. An, H. Kim, Appl. Phys. Lett. 100, 143504 (2012)

    Article  Google Scholar 

  12. B. Gao, H.W. Zhang, S. Yu, B. Sun, L.F. Liu, X.Y. Liu, Y. Wang, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang, in Symposium on VLSI technology, pp. 30–31, 2009

  13. L. Gao, Y. Li, Q. Li, Z. Song, F. Ma, Nanotechnology 28, 215201 (2017)

    Article  Google Scholar 

  14. T. Guo, T. Tan, Z. Liu, B. Liu, J. Alloy. Compd. 686, 669 (2016)

    Article  Google Scholar 

  15. A.M. Rana, T. Akbar, M. Ismail, E. Ahmad, F. Hussain, I. Talib, M. Imran, K. Mehmood, K. Iqbal, M.Y. Nadeem, Sci. Rep. 7, 39539 (2017)

    Article  Google Scholar 

  16. W.H. Kim, M.K. Kim, I.K. Oh, W.J. Maeng, T. Cheon, S.H. Kim, A. Noori, D. Thompson, S. Chu, H. Kim, J. Am. Ceram. Soc. 97, 1164 (2014)

    Article  Google Scholar 

  17. M. Varshney, A. Sharma, K.H. Chae, S. Kumar, S.O. Won, J. Phys. Chem. Solids 119, 242 (2018)

    Article  Google Scholar 

  18. K. Burke, J.P. Perdew, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  19. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  Google Scholar 

  20. P.J.D. Lindan, J. Phys: Condens. Matter 14, 2717 (2002)

    Google Scholar 

  21. S.Q. Wang, J.W. Mayer, J. Appl. Phys. 64, 4711 (1988)

    Article  Google Scholar 

  22. T.M. Pan, C.H. Lu, IEEE Trans. Electron Devices 59, 956 (2012)

    Article  Google Scholar 

  23. H.Y. Zhu, T. Hirata, J. Mater. Sci. Lett. 12, 749 (1993)

    Article  Google Scholar 

  24. L. Qiu, F. Liu, L. Zhao, Y. Ma, J. Yao, Appl. Surf. Sci. 252, 4931 (2006)

    Article  Google Scholar 

  25. A. Pfau, K.D. Schierbaum, Surf. Sci. 321, 71 (1994)

    Article  Google Scholar 

  26. M. Kouda, N. Umezawa, K. Kakushima, P. Ahmet, T. Chikyow, K. Yamada, H. Iwai, in Symposium on VLSI technology, p. 200 (2009)

  27. J. Shin, I. Kim, K.P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, J. Appl. Phys. 109, 033712 (2011)

    Article  Google Scholar 

  28. M. Ji, L. Wang, F. Wei, H. Tu, J. Du, Semicond. Sci. Technol. 25, 258 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51802025), the Fundamental Research Funds for the Central Universities (Nos. 300102318303, 300102318103), the Fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Tan, T., Duan, L. et al. Effect of rare element Ce doping concentration on resistive switching of HfOx film. J Mater Sci: Mater Electron 30, 457–462 (2019). https://doi.org/10.1007/s10854-018-0310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0310-8

Navigation