Skip to main content
Log in

Sintering characteristics, crystal structure, and microwave dielectric properties of Li2(Mg0.9A0.1)4TiO7 (A = Co2+, Ni2+, Mg2+, Zn2+, Ca2+)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Li2(Mg0.9A0.1)4TiO7 (A = Co2+, Ni2+, Mg2+, Zn2+, Ca2+) ceramics were prepared by the conventional solid-state reaction method. A series of Li2(Mg0.9A0.1)4TiO7 ceramics were investigated in regard to the sintering temperatures, crystal structures and dielectric properties. The Li2(Mg0.9A0.1)4TiO7 ceramic exhibited a single phase of Li2Mg4TiO7, and the Rietveld refinement was used to analyze the crystal structure. The Li2(Mg0.9Ca0.1)4TiO7 ceramics could be sintered below 1350 °C with high densities, high dielectric constants and near zero τf values. The maximum Q·f value of Li2(Mg0.9Zn0.1)4TiO7 was higher than that of Li2(Mg0.9A0.1)4TiO7 (A = Co2+, Ni2+, Mg2+, Ca2+). The optimum microwave dielectric properties of εr = 14.77, a high Q·f value of 162,200 GHz and τf = − 4.30 ppm/°C were achieved in Li2(Mg0.9Zn0.1)4TiO7 ceramic sintered at 1500 °C. In addition, Li2(Mg0.9Ca0.1)4TiO7 ceramic sintered at 1300 °C exhibited the suitable dielectric properties with a high εr value of 15.79, Q·f = 100,300 GHz and a near zero τf value of − 1.43 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)

    Article  Google Scholar 

  2. T.A. Vanderah, Science 298, 1182 (2002)

    Article  Google Scholar 

  3. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)

    Google Scholar 

  4. C.H. Yang, Y.J. Han, X.S. Sun et al., Ceram. Int. 44, 6330 (2018)

    Article  Google Scholar 

  5. G.G. Yao, X.S. Hu, X.L. Tian et al., Ceram. Int. 41, 563 (2015)

    Article  Google Scholar 

  6. H.T. Wu, E.S. Kim, J. Alloys Compd. 669, 134 (2016)

    Article  Google Scholar 

  7. G.G. Yao, P. Liu, H.W. Zhang, J. Mater. Sci.: Mater. Electron. 24, 1128 (2013)

    Google Scholar 

  8. Z.F. Fu, P. Liu, J.L. Ma et al., Mater. Lett. 164, 436 (2016)

    Article  Google Scholar 

  9. Z.F. Fu, P. Liu, J.L. Ma et al., J. Eur. Ceram. Soc. 36, 625 (2016)

    Article  Google Scholar 

  10. J.X. Bi, C.C. Li, Y.H. Zhang et al., Mater. Lett. 196, 128 (2017)

    Article  Google Scholar 

  11. Y.M. Lai, X.L. Tang, X. Huang et al., J. Eur. Ceram. Soc. 38, 1508 (2018)

    Article  Google Scholar 

  12. C.H. Su, F.C. Lin, T.M. Chu et al., J. Alloys Compd. 686, 608 (2016)

    Article  Google Scholar 

  13. P. Zhang, K.K. Sun, L. Liu et al., J. Alloys Compd. 765, 1209 (2018)

    Article  Google Scholar 

  14. J.X. Bi, C.F. Xing, Y.H. Zhang et al., J. Alloys Compd. 727, 123 (2017)

    Article  Google Scholar 

  15. Z.X. Fang, B. Tang, F. Si et al., Ceram. Int. 43, 1682 (2017)

    Article  Google Scholar 

  16. H.T. Chen, B. Tang, X. Guo et al., J. Mater. Sci.: Mater. Electron. 46, 1230 (2017)

    Google Scholar 

  17. B.W. Hakki, P.D. Coleman, IRE Trans. Microw. Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  18. W.E. Courtney, IEEE Trans. Microw. Theory Technol. 18, 476 (1970)

    Article  Google Scholar 

  19. M. Tabuchi, K. Ado, H. Kobayashi et al., J. Solid State Chem. 141, 5541 (1998)

    Article  Google Scholar 

  20. J. Li, Y. Han, T. Qiu et al., Mater. Res. Bull. 47, 2375 (2012)

    Article  Google Scholar 

  21. R.D. Shannon, Am. Miner. 77, 94 (1992)

    Google Scholar 

  22. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  Google Scholar 

  23. W.S. Kim, E.S. Kim, K.H. Yoon, J. Am. Ceram. Soc. 82, 2111 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2017M612341). The authors are thankful to the help of Professor Zhenxing Yue and postdoctoral Jie Zhang on the measurement of microwave properties in Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, C.F., Liu, Q.Q. & Wu, H.T. Sintering characteristics, crystal structure, and microwave dielectric properties of Li2(Mg0.9A0.1)4TiO7 (A = Co2+, Ni2+, Mg2+, Zn2+, Ca2+). J Mater Sci: Mater Electron 30, 302–307 (2019). https://doi.org/10.1007/s10854-018-0293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0293-5

Navigation