Skip to main content
Log in

Preparation and electromagnetic attenuation properties of MoS2–PANI composites: a promising broadband absorbing material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As an ideal electromagnetic (EM) wave absorber, it is prone to possess lightweight, thin matching thickness, broad absorption bandwidth and strong absorption performance. In this work, MoS2–PANI composites were prepared by situ chemical oxidative polymerization method, and the crystal structure, morphology, composition and EM properties were characterized. The microwave absorption properties of MoS2–PANI composites could be tuned by changing the PANI content to reach the best impedance match. The minimum reflection loss (RL) value of MoS2–PANI was − 40.79 dB at 14.01 GHz with the thickness of 2.0 mm, and the maximum effective absorption bandwidth was 5.02 GHz ranging from 11.88 to 16.90 GHz with a thickness of 2.0 mm. Moreover, the RL value of MoS2–PANI composites could reach under − 10 dB in a wide frequency range of 4.74–18 GHz with a thickness of 1.5–4.5 mm. In particular, the 3 mm wave attenuation properties of MoS2–PANI composites were investigated for the first time, and the maximum attenuation value reached 15.45 dB. As a result, MoS2–PANI composites are promising to be excellent EM wave absorption materials in broadband.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.P. Mu, J.F. Song, B.C. Wang, C. Zhang, J.Y. Xiang, F.S. Wen, Z.Y. Liu, Nanotechnology 29, 025704 (2018)

    Article  CAS  Google Scholar 

  2. P.B. Liu, Y. Huang, J. Yan, Y.W. Yang, Y. Zhao, ACS Appl. Mater. Interfaces 8, 5536–5546 (2016)

    Article  CAS  Google Scholar 

  3. S. Qiu, H.L. Lyu, J.R. Liu, Y.Z. Liu, N.N. Wu, W. Liu, ACS Appl. Mater. Interfaces 8, 20258–20266 (2016)

    Article  CAS  Google Scholar 

  4. M.W. Shi, Y.Y. Zhang, M.D. Bai, B.M. Li, Synth. Met. 233, 74–78 (2017)

    Article  CAS  Google Scholar 

  5. Y.C. Deng, L. Tang, G.M. Zeng, H.R. Dong, M. Yan, J.J. Wang, W. Hu, J.J. Wang, Y.Y. Zhou, J. Tang, Appl. Surf. Sci. 387, 882–893 (2016)

    Article  CAS  Google Scholar 

  6. H. Zhao, A. Du, M. Ling, V. Battaglia, G. Liu, Electrochim. Acta 209, 159–162 (2016)

    Article  CAS  Google Scholar 

  7. D.K. Zhao, L.G. Li, W.H. Niu, S.W. Chen, Sens. Actuators B 243, 380–387 (2017)

    Article  CAS  Google Scholar 

  8. A. Pron, P. Rannou, Prog. Polym. Sci. 27, 135–190 (2002)

    Article  CAS  Google Scholar 

  9. A.P.H.J. Schenning, E.W. Meijer, Chem. Commun. 26, 3245–3258 (2005)

    Article  CAS  Google Scholar 

  10. M.X. Wan, Adv. Mater. 20, 2926–2932 (2008)

    Article  CAS  Google Scholar 

  11. Q. Jia, W.Z. Wang, J. Zhao, J.P. Xiao, L.Y. Lu, H.L. Fan, J. Alloys Compd. 710, 717–724 (2017)

    Article  CAS  Google Scholar 

  12. P.B. Liu, Y. Huang, L. Wang, W. Zhang, Synth. Met. 177, 89–93 (2013)

    Article  CAS  Google Scholar 

  13. Y. Xu, J.H. Luo, W. Yao, J.G. Xu, T. Li, J. Alloys Compd. 636, 310–316 (2015)

    Article  CAS  Google Scholar 

  14. N.N. Ali, R.A.Q.B. Al-Marjeh, Y. Atassi, A. Salloum, A. Malki, M. Jafarian, J. Magn. Magn. Mater. 453, 53–61 (2018)

    Article  CAS  Google Scholar 

  15. C.N.R. Rao, H.S.S. Ramakrishna Matte, U. Maitra, Angew. Chem. Int. Ed. 52, 13162–13185 (2013)

    Article  CAS  Google Scholar 

  16. M.Q. Ning, M.M. Lu, J.B. Li, Z. Chen, Y.K. Dou, C.Z. Wang, F. Rehman, M.S. Cao, H.B. Jin, Nanoscale 7, 15734–15740 (2015)

    Article  CAS  Google Scholar 

  17. X. Ding, Y. Huang, S.P. Li, N. Zhang, J.G. Wang, Composites A 90, 424–432 (2016)

    Article  CAS  Google Scholar 

  18. X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, L. Guo, J. Phys. Chem. C 120, 22019–22027 (2016)

    Article  CAS  Google Scholar 

  19. H. Liu, F. Zhang, W.Y. Li, X.L. Zhang, C.S. Lee, W.L. Wang, Y.B. Tang, Electrochim. Acta 167, 132–138 (2015)

    Article  CAS  Google Scholar 

  20. J. Wang, Z.C. Wu, K.H. Hu, X.Y. Chen, H.B. Yin, J. Alloys Compd. 619, 38–43 (2015)

    Article  CAS  Google Scholar 

  21. Y. Gao, C.L. Chen, X.L. Tan, H. Xu, K.R. Zhu, J. Colloid Interface Sci. 476, 62–70 (2016)

    Article  CAS  Google Scholar 

  22. K.J. Huang, J.Z. Zhang, Y.J. Liu, L.L. Wang, Sens. Actuators B 194, 303–310 (2014)

    Article  CAS  Google Scholar 

  23. S.A. Wang, S.P. Zhang, M.X. Liu, H.O. Song, J.J. Gao, Y.Y. Qian, Sens. Actuators B 254, 1101–1109 (2018)

    Article  CAS  Google Scholar 

  24. J. Zhu, M.Q. Ye, A.J. Han, J. Mater. Sci. Mater. Electron. 28, 13350–13359 (2017)

    Article  CAS  Google Scholar 

  25. S.S. Ding, P. He, W.R. Feng, L. Li, G.L. Zhang, J.C. Chen, F.Q. Dong, H.C. He, J. Phys. Chem. Solids 91, 41–47 (2016)

    Article  CAS  Google Scholar 

  26. A.B. Laursen, P.C.K. Vesborg, I. Chorkendorff, Chem. Commun. 49, 4965–4967 (2013)

    Article  CAS  Google Scholar 

  27. W.L. Zhang, D.G. Jiang, X.X. Wang, B.N. Hao, Y.D. Liu, J.Q. Liu, J. Phys. Chem. C 121, 4989–4998 (2017)

    Article  CAS  Google Scholar 

  28. A.K. Thakur, A.B. Deshmukh, R.B. Choudhary, I. Karbhal, M. Majumder, M.V. Shelke, Mater. Sci. Eng. B 223, 24–34 (2017)

    Article  CAS  Google Scholar 

  29. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65, 124–139 (2013)

    Article  CAS  Google Scholar 

  30. M.S. Cao, C. Han, X.X. Wang, M. Zhang, Y.L. Zhang, J.C. Shu, H.J. Yang, X.Y. Fang, J. Yuan, J. Mater. Chem. C 6, 4586–4602 (2018)

    Article  CAS  Google Scholar 

  31. Y. Wang, X.M. Wu, W.Z. Zhang, C.Y. Luo, J.H. Li, Q. Wang, Q.G. Wang, Mater. Chem. Phys. 209, 23–30 (2018)

    Article  CAS  Google Scholar 

  32. Y. Sun, J.L. Xu, W. Qiao, X.B. Xu, W.L. Zhang, K.Y. Zhang, X. Zhang, X. Chen, W. Zhong, Y.W. Du, ACS Appl. Mater. Interfaces 8, 31878–31886 (2016)

    Article  CAS  Google Scholar 

  33. X.B. Wang, W.F. Zhu, X. Wei, Y.X. Zhang, H.H. Chen, Mater. Sci. Eng. B 185, 1–6 (2014)

    Article  CAS  Google Scholar 

  34. M.Q. Ye, Z.T. Li, C. Wang, A.J. Han, Mater. Res. Bull. 76, 247–255 (2016)

    Article  CAS  Google Scholar 

  35. J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, Chem. Eng. J. 339, 487–498 (2018)

    Article  CAS  Google Scholar 

  36. W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, J. Mater. Chem. C 3, 10017–10022 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a program funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (Grant No. 2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingquan Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 (PDF 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ye, M., Han, A. et al. Preparation and electromagnetic attenuation properties of MoS2–PANI composites: a promising broadband absorbing material. J Mater Sci: Mater Electron 30, 292–301 (2019). https://doi.org/10.1007/s10854-018-0292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0292-6

Navigation