Skip to main content
Log in

Tuning electric charge scattering in YBCO single crystals via irradiation with MeV electrons

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Irradiation with electrons is an efficient approach to inducing a large number of defects with a minimal impact on the material itself. Analysis of the energy transfer from an accelerated particle smashing into the crystal lattice shows that only electrons with MeV energies produce point defects in the form of interstitial ions and vacancies that form perfect scattering centers. Here, we investigate the changes in the resistive characteristics of YBCO single crystals from the 1-2-3 system after several steps of low-temperature irradiation with \(0.5-2.5\) MeV electrons and irradiation doses of up to \(8.8\times 10^{18}\) \(\hbox {cm}^{-2}\). The penetration depth of such electrons is much larger than the crystal thickness. We reveal that defects appearing in consequence of such electron irradiation not only increase the residual resistance, but they affect the phonon spectrum of the system and lower the superconducting transition temperature linearly with increase of the irradiation dose. Furthermore, the irradiation-induced defects are distributed non-uniformly, that manifests itself via a broadening of the superconducting transition. Interestingly, the excess conductivity remains almost unaffected after such electron irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal, Physica C 167(5–6), 571 (1990). https://doi.org/10.1016/0921-4534(90)90676-6

    Article  Google Scholar 

  2. G.Y. Khadzhai, R.V. Vovk, N.R. Vovk, S.N. Kamchatnaya, O.V. Dobrovolskiy, Physica C 545(Supplement C), 14 (2018). https://doi.org/10.1016/j.physc.2017.11.015

    Article  Google Scholar 

  3. W. Lang, J.D. Pedaring, Ion Irradiation of High-Temperature Superconductors and Its Application for Nanopatterning (Springer, Heidelberg, 2010), pp. 81–104

    Google Scholar 

  4. R. Vovk, G. Khadzhai, O. Dobrovolskiy, N. Vovk, Z. Nazyrov, J. Mater. Sci. 26(3), 1435 (2015). https://doi.org/10.1007/s10854-014-2558-y

    Google Scholar 

  5. C.W. Chu, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, Phys. Rev. Lett. 58, 405 (1987). https://doi.org/10.1103/PhysRevLett.%2058.405

    Article  Google Scholar 

  6. R.V. Vovk, N.R. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, Curr. Appl. Phys. 14(12), 1779 (2014). https://doi.org/10.1016/j.cap.2014.10.002

    Article  Google Scholar 

  7. L.M. Ferreira, P. Pureur, H.A. Borges, P. Lejay, Phys. Rev. B 69, 212505 (2004). https://doi.org/10.1103/PhysRevB.69.212505

    Article  Google Scholar 

  8. A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, S.N. Kamchatnaya, D.M. Sergeev, Curr. Appl. Phys. 16(9), 931 (2016). https://doi.org/10.1016/j.cap.2016.05.014

    Article  Google Scholar 

  9. Y. Fang, D. Yazici, B.D. White, M.B. Maple, Phys. Rev. B 92, 094507 (2015). https://doi.org/10.1103/PhysRevB.92.094507

    Article  Google Scholar 

  10. A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, Z. Nazyrov, S. Kamchatnaya, D. Sergeyev, Physica B 493, 58 (2016). https://doi.org/10.1016/j.physb.2016.04.015

    Article  Google Scholar 

  11. A.V. Bondarenko, A.A. Prodan, M.A. Obolenskii, R.V. Vovk, T.R. Arouri, Low Temp. Phys. 27(5), 339 (2001). https://doi.org/10.1063/1.1374717

    Article  Google Scholar 

  12. R.V. Vovk, A.L. Solovjov, Low Temp. Phys. 44(2), 81 (2018). https://doi.org/10.1063/1.5020905

    Article  Google Scholar 

  13. A. Lara, F.G. Aliev, A.V. Silhanek, V.V. Moshchalkov, Sci. Rep. 5, 9187 (2015). https://doi.org/10.1038/srep09187

    Article  Google Scholar 

  14. O.V. Dobrovolskiy, Rapid Res. Lett. 0(0), 1800223 (2018). https://doi.org/10.1002/pssr.201800223

    Google Scholar 

  15. D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors I (Word Scientific, Singapore, 1989)

    Google Scholar 

  16. Y. Yan, M. Blanchin, G. Fuchs, J. Less Commun. Met. 164–165, 215 (1990). https://doi.org/10.1016/0022-5088(90)90217-8

    Article  Google Scholar 

  17. M. Akhavan, Physica B 321(1–4), 265 (2002). https://doi.org/10.1016/S0921-4526(02)00860-8

    Article  Google Scholar 

  18. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, A. Chroneos, Physica C 516, 58 (2015). https://doi.org/10.1016/j.physc.2015.06.011

    Article  Google Scholar 

  19. A.C. Damask, G.J. Dienes, Point Defects in Metals (Gordon & Breach Science Publishers Ltd, London, 1963)

    Google Scholar 

  20. G. Ghigo, G.A. Ummarino, L. Gozzelino, R. Gerbaldo, F. Laviano, D. Torsello, T. Tamegai, Sci. Rep. 7(1), 13029 (2017). https://doi.org/10.1038/s41598-017-13303-5

    Article  Google Scholar 

  21. E.H. Brandt, Rep. Prog. Phys. 58(11), 1465 (1995)

    Article  Google Scholar 

  22. M. Baert, V.V. Metlushko, R. Jonckheere, V.V. Moshchalkov, Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995). https://doi.org/10.1103/PhysRevLett.%2074.3269

    Article  Google Scholar 

  23. K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, V.V. Moshchalkov, Science 274(5290), 1167 (1996). https://doi.org/10.1126/science.274.5290.1167

    Article  Google Scholar 

  24. A. Castellanos, R. Wördenweber, G. Ockenfuss, A.V.D. Hart, K. Keck, Appl. Phys. Lett. 71(7), 962 (1997). https://doi.org/10.1063/1.119701

    Article  Google Scholar 

  25. A. Crisan, A. Pross, D. Cole, S.J. Bending, R. Wördenweber, P. Lahl, E.H. Brandt, Phys. Rev. B 71, 144504 (2005). https://doi.org/10.1103/PhysRevB.71.144504

    Article  Google Scholar 

  26. O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, J. Supercond. Nov. Magn. 24, 375 (2011). https://doi.org/10.1007/s10948-010-1055-7

    Article  Google Scholar 

  27. G. Zechner, F. Jausner, L.T. Haag, W. Lang, M. Dosmailov, M.A. Bodea, J.D. Pedarnig, Phys. Rev. Appl. 8, 014021 (2017). https://doi.org/10.1103/PhysRevApplied.%208.014021

    Article  Google Scholar 

  28. O.V. Dobrovolskiy, Physica C 533, 80 (2017). https://doi.org/10.1016/j.physc.2016.07.008

    Article  Google Scholar 

  29. A. Pautrat, J. Scola, C. Goupil, C. Simon, C. Villard, B. Domengès, Y. Simon, C. Guilpin, L. Méchin, Phys. Rev. B 69, 224504 (2004). https://doi.org/10.1103/PhysRevB.69.224504

    Article  Google Scholar 

  30. M. Kompaniiets, O.V. Dobrovolskiy, C. Neetzel, F. Porrati, J. Brötz, W. Ensinger, M. Huth, Appl. Phys. Lett. 104, 052603 (2014). https://doi.org/10.1063/1.4863980

    Article  Google Scholar 

  31. A. Lara, O.V. Dobrovolskiy, J.L. Prieto, M. Huth, F.G. Aliev, Appl. Phys. Lett. 105(18), 182402 (2014). https://doi.org/10.1063/1.4900789

    Article  Google Scholar 

  32. O.V. Dobrovolskiy, M. Kompaniiets, R. Sachser, F. Porrati, C. Gspan, H. Plank, M. Huth, Beilstein J. Nanotechnol. 6, 1082 (2015). https://doi.org/10.3762/bjnano.6.109

    Article  Google Scholar 

  33. O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij, Appl. Phys. Lett. 107, 162603 (2015). https://doi.org/10.1063/1.4934487

    Article  Google Scholar 

  34. O.V. Dobrovolskiy, M. Huth, V. Shklovskij, R.V. Vovk, Sci. Rep. 7, 13740 (2017). https://doi.org/10.1038/s41598-017-14232-z

    Article  Google Scholar 

  35. F. Rullier-Albenque, H. Alloul, R. Tourbot, Phys. Rev. Lett. 91, 047001 (2003). https://doi.org/10.1103/PhysRevLett.%2091.047001

    Article  Google Scholar 

  36. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Solid State Commun. 282, 5 (2018). https://doi.org/10.1016/j.ssc.2018.07.005

    Article  Google Scholar 

  37. Y. Mizukami, M. Konczykowski, Y. Kawamoto, S. Kurata, S. Kasahara, K. Hashimoto, V. Mishra, A. Kreisel, Y. Wang, P.J. Hirschfeld, Y. Matsuda, T. Shibauchi, Nat. Commun. 5, 5657 (2014)

    Article  Google Scholar 

  38. N.A. Azarenkov, V.N. Voevodin, R.V. Vovk, G.Y. Khadzhai, S.V. Lebedev, V.V. Sklyar, S.N. Kamchatnaya, O.V. Dobrovolskiy, J. Mater. Sci. 28, 15886 (2017). https://doi.org/10.1007/s10854-017-7483-4

    Google Scholar 

  39. J. Giapintzakis, W.C. Lee, J.P. Rice, D.M. Ginsberg, I.M. Robertson, R. Wheeler, M.A. Kirk, M.O. Ruault, Phys. Rev. B 45, 10677 (1992). https://doi.org/10.1103/PhysRevB.45.10677

    Article  Google Scholar 

  40. R. Rangel, D. Galvan, G. Hirata, E. Adem, F. Morales, M. Maple, Supercond. Sci. Technol. 12(5), 264 (1999)

    Article  Google Scholar 

  41. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994). https://doi.org/10.1103/RevModPhys.%2066.1125

    Article  Google Scholar 

  42. F. Dworschak, U. Dedek, Y. Petrusenko, Physica C 235–240, 1343 (1994). https://doi.org/10.1016/0921-4534(94)91896-1

    Article  Google Scholar 

  43. F. Rullier-Albenque, P.A. Vieillefond, H. Alloul, A.W. Tyler, P. Lejay, J.F. Marucco, Eur. Phys. Lett. 50(1), 81 (2000)

    Article  Google Scholar 

  44. A.V. Bondarenko, A.A. Prodan, Y.T. Petrusenko, V.N. Borisenko, F. Dworschak, U. Dedek, Phys. Rev. B 64, 092513 (2001). https://doi.org/10.1103/PhysRevB.64.092513

    Article  Google Scholar 

  45. F. Rullier-Albenque, H. Alloul, F. Balakirev, C. Proust, Eur. Phys. Lett. 81(3), 37008 (2008)

    Article  Google Scholar 

  46. U. Welp, W.K. Kwok, G.W. Crabtree, K.G. Vandervoort, J.Z. Liu, Phys. Rev. Lett. 62, 1908 (1989). https://doi.org/10.1103/PhysRevLett.%2062.1908

    Article  Google Scholar 

  47. T.A. Friedmann, J.P. Rice, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 39, 4258 (1989). https://doi.org/10.1103/PhysRevB.39.4258

    Article  Google Scholar 

  48. Y.M. Kagan, M.P. Gernov, J. Exp. Theor. Phys. 50, 1107 (1966)

    Google Scholar 

  49. M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev, Low Temp. Phys. 32(6), 571 (2006). https://doi.org/10.1063/1.2215373

    Article  Google Scholar 

  50. L. Colquitt, J. Appl. Phys. 36(8), 2454 (1965). https://doi.org/10.1063/1.1714510

    Article  Google Scholar 

  51. N.V. Anshukova et al., JETP Lett. 48, 152 (1988)

    Google Scholar 

  52. V.I. Khotkevich, B.A. Merisov, M.A. Ermolaev, A.V. Krasnokutskiy, Fiz. Nizk. Temp. 9, 1056 (1983)

    Google Scholar 

  53. V.M. Apalkov, M.E. Portnoi, Phys. Rev. B 65, 125310 (2002). https://doi.org/10.1103/PhysRevB.65.125310

    Article  Google Scholar 

  54. R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 68, 134508 (2003). https://doi.org/10.1103/PhysRevB.68.134508

    Article  Google Scholar 

  55. I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20(7), 498 (1994). https://doi.org/10.1063/1.592763

    Google Scholar 

  56. R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. Lett. 91, 235302 (2003). https://doi.org/10.1103/PhysRevLett.%2091.235302

    Article  Google Scholar 

  57. P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011). https://doi.org/10.1103/PhysRevB.84.104507

    Article  Google Scholar 

  58. A.A. Abrikosov, L.P. Gorkov, J. Exp. Theor. Phys. 39, 1781 (1960)

    Google Scholar 

  59. B.N. Rolov, V.E. Yurkevich, Physics of Smeared Phase Transitions (RGU, Rostov-on-Don, 1983)

    Google Scholar 

Download references

Acknowledgements

Research leading to these results received funding from the European Commission in the framework of the program Marie Sklodowska-Curie Actions — Research and Innovation Staff Exchange (MSCA-RISE) under Grant Agreement No. 644348 (MagIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dobrovolskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vovk, R.V., Khadzhai, G.Y. & Dobrovolskiy, O.V. Tuning electric charge scattering in YBCO single crystals via irradiation with MeV electrons. J Mater Sci: Mater Electron 30, 241–245 (2019). https://doi.org/10.1007/s10854-018-0286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0286-4

Navigation