Skip to main content
Log in

Cadmium and ytterbium Co-doped TiO2 nanorod arrays perovskite solar cells: enhancement of open circuit voltage and short circuit current density

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 nanorod arrays of crystalline Cd, Y-co-doped rutile were synthesized and successfully assembled in perovskite solar cells (PSCs) as the photoanode. In this work, CH3NH3PbI3−xClx was used as the light absorber and spiro-OMeTAD as hole transport material (HTM). The synthesized TiO2 nanorod arrays were investigated by field emission-scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD) and UV–Vis diffused reflectance. FE-SEM images indicate that the co-doped TiO2 nanorod arrays were slightly sparser and shorter in length than that of un-doped ones. XRD pattern demonstrates that the as-prepared TiO2 nanorod arrays were rutile phase. The UV–Vis spectrum proves that the co-doped samples possess higher light scattering intensity than the un-doped samples, which may contribute to improve the short current density of PSCs. And the band gap of the TiO2 nanorod shows a positive shift when doped with cadmium and ytterbium. Furthermore, a negative shift in the flat-band potential (Vfb) was also observed. Finally, the device based on co-doped TiO2 nanorod arrays has improved open circuit voltage (Voc) and short circuit current density (Jsc). A higher power conversion efficiency (η) of 9.06% was obtained for the co-doped device while 8.12% for the un-doped TiO2 nanorod arrays. This paper opens a door to multi-element co-doped 1-D nanostructured materials for the improving the open circuit voltage and short circuit current density of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.S. Jung, N.G. Park, Small 11, 10 (2015)

    Article  CAS  Google Scholar 

  2. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 345, 295 (2014)

    Article  CAS  Google Scholar 

  3. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013)

    Article  CAS  Google Scholar 

  4. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  5. N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, S.I. Seok, J. Lee, J. Seo, Nat. Energy 3, 682 (2018)

    Article  CAS  Google Scholar 

  6. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nat. Mater. 12, 1107 (2013)

    Article  Google Scholar 

  7. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

    Article  CAS  Google Scholar 

  8. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  9. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26, 1584 (2014)

    Article  CAS  Google Scholar 

  10. N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)

    Article  CAS  Google Scholar 

  11. L. Zheng, Y.-H. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, Chem. Commun. 50, 11196 (2014)

    Article  CAS  Google Scholar 

  12. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel, J.-E. Moser, Nat. Photonics 8, 250 (2014)

    Article  CAS  Google Scholar 

  13. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Nano Lett. 14, 1000 (2014)

    Article  CAS  Google Scholar 

  14. P. Gao, M. Grätzel, M.K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014)

    Article  CAS  Google Scholar 

  15. R. Yoshida, Y. Suzuki, S. Yoshikawa, J. Solid State Chem. 178, 2179 (2005)

    Article  CAS  Google Scholar 

  16. X. Zhang, Z. Bao, X. Tao, H. Sun, W. Chen, X. Zhou, RSC Adv. 4, 64001 (2014)

    Article  CAS  Google Scholar 

  17. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 53, 2812 (2014)

    Article  CAS  Google Scholar 

  18. H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, Nano Lett. 13, 2412 (2013)

    Article  CAS  Google Scholar 

  19. S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, C.K. Hong, Chem. Mater. 27, 1541 (2015)

    Article  CAS  Google Scholar 

  20. A.K. Chandiran, F. Sauvage, L. Etgar, M. Graetzel, J. Phys. Chem. C 115, 9232 (2011)

    Article  CAS  Google Scholar 

  21. A.K. Chandiran, F. Sauvage, M. Casas-Cabanas, P. Comte, S.M. Zakeeruddin, M. Graetzel, J. Phys. Chem. C 114, 15849 (2010)

    Article  CAS  Google Scholar 

  22. H. Pan, J. Qian, Y. Cui, H. Xie, X. Zhou, J. Mater. Chem. 22, 6002 (2012)

    Article  CAS  Google Scholar 

  23. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014)

    Article  CAS  Google Scholar 

  24. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, A.M. Kumar, Z.M. Gasem, Superlattice. Microstruct. 74, 114 (2014)

    Article  CAS  Google Scholar 

  25. Y. Li, Y. Guo, Y. Li, X. Zhou, Electrochim. Acta 200, 29 (2016)

    Article  CAS  Google Scholar 

  26. Y. Lv, Y. Li, H. Sun, Y. Guo, Y. Li, J. Tan, X. Zhou, Thin Solid Films 651, 117 (2018)

    Article  CAS  Google Scholar 

  27. X. Tao, Y. Wang, X. Zhang, H. Sun, Q. Zhang, L. Niu, J. Liu, X. Zhou, J. Alloys Compd. 631, 202 (2015)

    Article  CAS  Google Scholar 

  28. D.X.M. Vargas, J.R.D.L. Rosa, C.J. Lucio-Ortiz, A. Hernández-Ramirez, G.A. Flores-Escamilla, C.D. Garcia, Appl. Catal. B Environ. 179, 249 (2015)

    Article  Google Scholar 

  29. Y. Xiao, G. Han, Y. Chang, H. Zhou, M. Li, Y. Li, J. Power Sources 267, 1 (2014)

    Article  CAS  Google Scholar 

  30. M. Khan, W. Cao, M. Ullah, Phys. Status Solidi B 250, 364 (2013)

    Article  CAS  Google Scholar 

  31. X. Lue, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, Adv. Funct. Mater. 20, 509 (2010)

    Article  CAS  Google Scholar 

  32. X. Feng, K. Shankar, M. Paulose, C.A. Grimes, Angew. Chem. Int. Ed. 48, 8095 (2009)

    Article  CAS  Google Scholar 

  33. Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Langmuir 21, 4272 (2005)

    Article  CAS  Google Scholar 

  34. J. Liu, H. Yang, W. Tan, X. Zhou, Y. Lin, Electrochim. Acta 56, 396 (2010)

    Article  CAS  Google Scholar 

  35. X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, C. Yuan, Chem. Commun. 50, 6368 (2014)

    Article  CAS  Google Scholar 

  36. A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem 4, 859 (2003)

    Article  CAS  Google Scholar 

  37. A. Baumann, K. Tvingstedt, M.C. Heiber, S. Väth, C. Momblona, H.J. Bolink, V. Dyakonov, APL Mater. 2, 081501 (2014)

    Article  Google Scholar 

  38. A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M.K. Nazeeruddin, M. Grätzel, ACS Nano 8, 362 (2014)

    Article  CAS  Google Scholar 

  39. E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 5, 680 (2014)

    Article  CAS  Google Scholar 

  40. S. Ito, S. Tanaka, H. Vahlman, H. Nishino, K. Manabe, P. Lund, ChemPhysChem 15, 1194 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of China (Nos. 21676146, 51272104); the Financial Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Lv, Y., Chen, H. et al. Cadmium and ytterbium Co-doped TiO2 nanorod arrays perovskite solar cells: enhancement of open circuit voltage and short circuit current density. J Mater Sci: Mater Electron 29, 21138–21144 (2018). https://doi.org/10.1007/s10854-018-0262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0262-z

Navigation