Skip to main content

Advertisement

Log in

Construction of hierarchical porous NiCo2S4 nanoarchitecture supported on nickel foam for high-performance aqueous hybrid supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hierarchical porous NiCo2S4 nanostructure directly grown on Ni foam (HP-NiCo2S4/NF) as a bind-free electrode for hybrid supercapacitors has been successfully developed through a facile and efficient hydrothermal method. Such hierarchical nanostructure is constructed with interconnected ultrathin NiCo2S4 nanosheets subunits, forming numerous interspaces. The novel structure not only exposes more reaction active sites but also facilitates fast ion and electron transport. In addition, the integrated bind-free architecture ensures good conductivity. As a result, the as-fabricated HP-NiCo2S4/NF exhibits a high specific capacity of 1209.7 C g− 1 at a current rate of 1 mA cm− 2, while maintaining an excellent rate capability and satisfactory cycling stability. Furthermore, an aqueous hybrid supercapacitors (HSCs) device has been successfully assembled by employing HP-NiCo2S4/NF and activated carbon (AC) as positive electrode and negative electrode, respectively. The optimized device delivers a maximum energy density of 69.4 Wh kg− 1 at a power density of 372.1 W kg− 1. Moreover, energy density still retains a high value of 44.6 Wh kg− 1 when power density reaches as high as 14.9 kW kg− 1. Meanwhile, an excellent cycling stability of 94.48% capacitance retention is obtained after 2000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017)

    Article  Google Scholar 

  2. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  Google Scholar 

  3. International Energy, Outlook 2016 (US Energy Information Administration. 2016)

  4. J.L. Brédas, E.H. Sargent, G.D. Scholes, Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017)

    Article  Google Scholar 

  5. V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017)

    Article  CAS  Google Scholar 

  6. C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017)

    Article  Google Scholar 

  7. M.A. Green, S.P. Bremner, Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017)

    Article  Google Scholar 

  8. J.H. Montoya et al., Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017)

    Article  Google Scholar 

  9. C.G. Wang, K. Guo, W.D. He et al., Hierarchical CuCo2O4@nickel-cobalt hydroxides core/shell nanoarchitectures for high-performance hybrid supercapacitors. Sci. Bull. 62, 1122–1131 (2017)

    Article  CAS  Google Scholar 

  10. Y. Jiao, J. Pei, D.H. Chen et al., Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 1094–1102 (2017)

    Article  CAS  Google Scholar 

  11. J.R. Rani, R. Thangavel, J.M. Woo et al., High volumetric energy density hybrid supercapacitors based on reduced graphene oxide scrolls. ACS Appl. Mater. Interfaces 9, 22398–22407 (2017)

    Article  CAS  Google Scholar 

  12. W. Jiang, F. Hu, Q.Q. Yan, X. Wu, Investigation on electrochemical behaviors of NiCo2O4 battery-type supercapacitor electrodes: the role of aqueous electrolyte. Inorg. Chem. Front. 4, 1642–1648 (2017)

    Article  CAS  Google Scholar 

  13. J. Yang, W. Liu, H. Niu et al., Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res. 11, 4744–4758 (2018)

    Article  CAS  Google Scholar 

  14. H.Y. Wang, M.M. Liang, D. Duan, W.Y. Shi, Y.Y. Song, Z.B. Sun, Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 350, 523–533 (2018)

    Article  CAS  Google Scholar 

  15. S.G. Dai, B.T. Zhao, C. Qu, Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high-energy and power density. Nano Energy 33, 522–531 (2017)

    Article  CAS  Google Scholar 

  16. G.J. Liu, B. Wang, T. Liu et al., 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J. Mater. Chem. A. (2018). https://doi.org/10.1039/C7TA10140F

    Article  Google Scholar 

  17. H. Hu, B.Y. Guan, X.W. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chemistry 7, 102–113 (2016)

    Article  Google Scholar 

  18. W.H. Luo, G.F. Zhang, Y.X. Cui et al., One-step extended strategy for the ionic liquid assisted synthesis of Ni3S4-MoS2 heterojunction electrodes for supercapacitors. J. Mater. Chem. A 5, 11278–11285 (2017)

    Article  CAS  Google Scholar 

  19. S.E. Moosavifard, S. Fani, M. Rahmanian, Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem. Commun. 52, 4517–4520 (2016)

    Article  CAS  Google Scholar 

  20. A.M. Elshahawy, X. Li, H. Zhang et al., Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 7494–7506 (2017)

    Article  CAS  Google Scholar 

  21. X. Hu, W. Shao, X.D. Hang et al., Superior electrical conductivity in hydrogenated layered ternary chalcogenide nanosheets for flexible all-solid-state supercapacitors. Angew. Chem. Int. Ed. 55, 5733–5738 (2016)

    Article  CAS  Google Scholar 

  22. J. Balamurugan, C. Li, S.G. Peer, N.H. Kim et al., High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability. Nanoscale 9, 13747–13759 (2017)

    Article  CAS  Google Scholar 

  23. Y.Y. Zheng, J. Xu, X.S. Yang, Y.J. Zhang, Y.Y. Shang, X.Y. Hu, Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111–121 (2018)

    Article  CAS  Google Scholar 

  24. Y.W. Zheng, X.X. Wang, W. Zhao, X.Y. Cao, J.Q. Liu, Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors. Chem. Eng. J. 333, 603–612 (2018)

    Article  CAS  Google Scholar 

  25. J. Yang, C. Yu, X.M. Fan, S.X. Liang, S.F. Li, H.W. Huang, Z. Ling, C. Hao, J.S. Qiu, Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1305 (2016)

    Article  CAS  Google Scholar 

  26. T. Xiao, J. Li, X.Y. Zhuang, W. Zhang, S.L. Wang, X.L. Chen, P. Xiang, L.H. Jiang, X.Y. Tan, Wide potential window and high specific capacitance triggered via rough NiCo2S4 nanorod arrays with open top for symmetric supercapacitors. Electrochim. Acta 269, 397–404 (2018)

    Article  CAS  Google Scholar 

  27. J. Pu, F.L. Cui, S.B. Chu, T.T. Wang, E.H. Sheng, Z.H. Wang, Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain. Chem. Eng. 2, 809–815 (2014)

    Article  CAS  Google Scholar 

  28. L.F. Shen, L. Yu, H.B. Wu et al., Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694–6702 (2015)

    Article  CAS  Google Scholar 

  29. X.Y. Yang, L.H. Chen, Y. Li et al., Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017)

    Article  CAS  Google Scholar 

  30. Q.B. Zhang, B. Zhao, J.X. Wang et al., High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn-Ni-Al-Co oxide nanosheets. Nano Energy 28, 475–485 (2016)

    Article  Google Scholar 

  31. Y.Z. Jiang, L.J. Zhang, H. Zhang et al., Hierarchical Ni0.54Co0.46O2 nanowire and nanosheet arrays grown on carbon fiber cloth for high-performance supercapacitors. J. Power Sources 329, 473–483 (2016)

    Article  CAS  Google Scholar 

  32. H.Q. Fan, L.X. Quan, M.Q. Yuan et al., Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. Electrochim. Acta 188, 222–229 (2016)

    Article  CAS  Google Scholar 

  33. Z.Q. Zhang, H.D. Zhang, X.Y. Zhang et al., Facile synthesis of hierarchical CoMoO4@NiMoO4 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J. Mater. Chem. A 4, 18578–18584 (2016)

    Article  CAS  Google Scholar 

  34. M.L. Yan, Y.D. Yao, J.Q. Wen et al., Construction of hierarchical NiCo2S4@PPy core-shell heterostructure nanotubes array on Ni foam for high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces 8, 24525–24535 (2016)

    Article  CAS  Google Scholar 

  35. T. Brousse, D. Bèlanger, J.W. Long, To be or not to be pseudocapacitive. J. Electrochem. Soc. 162, A5185–A5189 (2015)

    Article  CAS  Google Scholar 

  36. L.X. Fang, F. Wang, T.L. Zhai, Y. Qiu, M.D. Lan, K.J. Huang, Q.S. Jing, Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochim. Acta 259, 552–558 (2018)

    Article  CAS  Google Scholar 

  37. Y.M. Fan, Y.C. Liu, X.B. Liu, Y.N. Liu, L.Z. Fan, Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. Electrochim. Acta 249, 1–8 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Nanhu Scholars Program for Young Scholars of XYNU, the Science and technology project of Henan Province (162102310122) and Program for University Innovative Research Team of Henan (15IRTSTHN001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linxia Fang or Qiang shan Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, M., Wang, F., Wu, Y. et al. Construction of hierarchical porous NiCo2S4 nanoarchitecture supported on nickel foam for high-performance aqueous hybrid supercapacitors. J Mater Sci: Mater Electron 29, 21109–21118 (2018). https://doi.org/10.1007/s10854-018-0259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0259-7

Navigation