Skip to main content
Log in

Facile preparation of asymmetric phthalocyanine/multi-walled carbon nanotube hybrid material by in situ click chemistry

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The asymmetrical zinc phthalocyanine–multiwalled carbon nanotube hybrid material (aZnPc–MWCNT) were successfully prepared by in situ click chemistry of 4-(m-tolyloxygen)-5-nitrophthalonitrile and 4-azide-phthalonitrile modified MWCNT precursors in the Cu(I)/DBU catalyst system. In situ click chemistry reactions and covalent bonds between aZnPc and MWCNT were confirmed by FT-IR, UV–Vis and fluorescence spectra. The aZnPc–MWCNT red-shifted 12–690 nm compared with pristine ZnPc. The microstructure and morphology of aZnPc–MWCNT were investigated by TEM, SEM and AFM. The solubility of aZnPc–MWCNT could be significantly improved. After the ZnPc were uniformly distributed on the surface of MWCNTs, the aggregation of aZnPc–MWCNT was significantly reduced. The thermal degradation temperature of aZnPc–MWCNT was 72.8 °C higher than that of pristine ZnPc. TG results also indicated that the ZnPc content of aZnPc–MWCNT is 14.4%. It is expected that novel organic–inorganic donor–acceptor hybrid material possessing good solubility, optical and thermal stability properties would be obtained, and new materials for the preparation of organic electronic devices should be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139(21), 7148–7151 (2017)

    Article  CAS  Google Scholar 

  2. H. Bin, Z.G. Zhang, L. Gao, S. Chen, L. Zhong, L. Xue, C. Yang, Y. Li, Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 138(13), 4657–4664 (2016)

    Article  CAS  Google Scholar 

  3. B.M. Squeo, V.G. Gregoriou, A. Avgeropoulos, S. Baysec, S. Allard, U. Scherf, C.L. Chochos, BODIPY-based polymeric dyes as emerging horizon materials for biological sensing and organic electronic applications. Prog. Polym. Sci. 71, 26–52 (2017)

    Article  CAS  Google Scholar 

  4. C. Pan, K. Kou, Y. Zhang, Z. Li, G. Wu, Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Composites B 153, 1–8 (2018)

    Article  CAS  Google Scholar 

  5. B. Kan, H. Feng, X. Wan, F. Liu, X. Ke, Y. Wang, Y. Wang, H. Zhang, C. Li, J. Hou, Y. Chen, Small-molecule acceptor based on the heptacyclic benzodi (cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J. Am. Chem. Soc. 139(13), 4929–4934 (2017)

    Article  CAS  Google Scholar 

  6. G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)

    Article  CAS  Google Scholar 

  7. X. Zhu, Y. Yuan, L. Li, Y. Du, F. Li, Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques. Mater. Des. 129, 91–102 (2017)

    Article  Google Scholar 

  8. Q. Xie, Y. Cheng, S. Chen, G. Wu, Z. Wang, Z. Jia, Dielectric and thermal properties of epoxy resins with TiO2 nanowires. J. Mater. Sci.: Mater. Electron. 28, 17871–17880 (2017)

    CAS  Google Scholar 

  9. L. Yang, S. Zhang, C. He, J. Zhang, H. Yao, Y. Yang, Y. Zhang, W. Zhao, J. Hou, New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells. J. Am. Chem. Soc. 139(5), 1958–1966 (2017)

    Article  CAS  Google Scholar 

  10. Z. Wang, J. Liu, Y. Cheng, S. Chen, M. Yang, J. Huang, H. Wang, G. Wu, H. Wu, Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement. Nanomaterials 8(4), 242 (2018)

    Article  Google Scholar 

  11. H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z.J. Xu, Interface polarization strategy to solve electromagnetic wave interference. ACS Appl. Mater. Interfaces 9, 5660–5668 (2017)

    Article  CAS  Google Scholar 

  12. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci.: Mater. Electron. 29, 17122–17136 (2018)

    CAS  Google Scholar 

  13. C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46(5), 1510–1525 (2017)

    Article  CAS  Google Scholar 

  14. Z. Yang, S. Chen, Y. Zhao, P. Zhou, Z. Cheng, Hg2+ chromogenic and fluorescence indicators based on rhodamine derivatives bearing thiophene group. Sens. Actuators B 266, 422–428 (2018)

    Article  CAS  Google Scholar 

  15. X.P. Kong, X. Shen, J. Jang, X. Gao, Electron pair repulsion responsible for the peculiar edge effects and surface chemistry of black phosphorus. J. Phys. Chem. Lett. 9(5), 947–953 (2018)

    Article  CAS  Google Scholar 

  16. C.P. Reis, R.J. Neufeld, F. Veiga, Preparation of drug-loaded polymeric nanoparticles. In Nanomedicine in Cancer (Pan Stanford, Singapore, 2017), pp. 197–240

  17. Z. Yang, K. Fu, J. Yu, P. Zhou, Z. Cheng, Preparation and characterization of temperature-and pH-responsive diblock copolymers and their silica-coated nanoparticles. Polym. Adv. Technol. 29(8), 2273–2280 (2018)

    Article  CAS  Google Scholar 

  18. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Article  CAS  Google Scholar 

  19. Z. Yang, S. Chen, K. Fu, X. Liu, F. Li, Y. Du, P. Zhou, Z. Cheng, Highly efficient adsorbent for organic dyes based on a temperature-and pH-responsive multiblock polymer. J. Appl. Polym. Sci. 135(34), 46626 (2018)

    Article  Google Scholar 

  20. X. Ma, B. Zhang, Q. Cong, X. He, M. Gao, G. Li, Organic/inorganic nanocomposites of ZnO/CuO/chitosan with improved properties. Mater. Chem. Phys. 178, 88–97 (2016)

    Article  CAS  Google Scholar 

  21. A. Rabti, N. Raouafi, A. Merkoçi, Bio (sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes. Carbon 108, 481–514 (2016)

    Article  CAS  Google Scholar 

  22. N. Karousis, I. Suarez-Martinez, C.P. Ewels, N. Tagmatarchis, Structure, properties, functionalization, and applications of carbon nanohorns. Chem. Rev. 116(8), 4850–4883 (2016)

    Article  CAS  Google Scholar 

  23. D. Sun, T. Lu, F. Xiao, X. Zhu, G. Sun, Formulation and aging resistance of modified bio-asphalt containing high percentage of waste cooking oil residues. J. Clean. Prod. 161, 1203–1214 (2017)

    Article  CAS  Google Scholar 

  24. A. Alam, C. Wan, T. McNally, Surface amination of carbon nanoparticles for modification of epoxy resins: plasma-treatment vs. wet-chemistry approach. Eur. Polym. J. 87, 422–448 (2017)

    Article  CAS  Google Scholar 

  25. V. Eskizeybek, A. Avcı, A. Gülce, Preparation and mechanical properties of carbon nanotube grafted glass fabric/epoxy multi-scale composites. Adv. Compos. Mater. 26(2), 169–180 (2017)

    Article  CAS  Google Scholar 

  26. Z. Yang, K. Fu, J. Yu, X. Shi, P. Zhou, Z. Cheng, Facile preparation of nanoporous C60/P3HT thin films from PLA-b-C60-b-P3HT triblock copolymers. Appl. Surf. Sci. 458, 70–76 (2018)

    Article  CAS  Google Scholar 

  27. U. Alam, M. Fleisch, I. Kretschmer, D. Bahnemann, M. Muneer, One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Appl. Catal. B 218, 758–769 (2017)

    Article  CAS  Google Scholar 

  28. J.U. Lee, B. Park, B.S. Kim, D.R. Bae, W. Lee, Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content. Composites A 84, 482–489 (2016)

    Article  CAS  Google Scholar 

  29. D. Sun, G. Sun, X. Zhu, F. Ye, J. Xu, Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations. Fuel 211, 609–620 (2018)

    Article  CAS  Google Scholar 

  30. M. Li, Z. Wang, Q. Liu, S. Wang, Y. Gu, Y. Li, Z. Zhang, Carbon nanotube film/epoxy composites with high strength and toughness. Polym. Compos. 38(3), 588–596 (2017)

    Article  CAS  Google Scholar 

  31. A. Servant, I. Jacobs, C. Bussy, C. Fabbro, T. Da Ros, E. Pach, B. Ballesteros, M. Prato, K. Nicolay, K. Kostarelos, Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking. Carbon 97, 126–133 (2016)

    Article  CAS  Google Scholar 

  32. B.O. Agboola, K.I. Ozoermena, T. Nyokong et al., Tuning the physic electrochemical properties of novel cobalt octa [(3,5-biscarboxylate)-phenoxy] phthalocyanine complex using phenylamine functionalized SWCNTs. Carbon 48, 763–773 (2010)

    Article  CAS  Google Scholar 

  33. Z. Yang, X. Shi, J. Yuan, H. Pu, Y. Liu, Preparation of poly (3-hexylthiophene)/graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Appl. Surf. Sci. 257(1), 138–142 (2010)

    Article  CAS  Google Scholar 

  34. Z. Yang, D.A. Wicks, C.E. Hoyle, H. Pu, J. Yuan, D. Wan, Y. Liu, Newly UV-curable polyurethane coatings prepared by multifunctional thiol-and ene-terminated polyurethane aqueous dispersions mixtures: preparation and characterization. Polymer 50(7), 1717–1722 (2009)

    Article  CAS  Google Scholar 

  35. N.A. Karim, S.K. Kamarudin, Novel heat-treated cobalt phthalocyanine/carbon-tungsten oxide nanowires (CoPc/C-W18O49) cathode catalyst for direct methanol fuel cell. J. Electroanal. Chem. 803, 19–29 (2017)

    Article  CAS  Google Scholar 

  36. S. Leonardo, M. Campàs, Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Microchim. Acta 183(6), 1881–1890 (2016)

    Article  CAS  Google Scholar 

  37. W. Huang, J.M. Ahlfield, P.A. Kohl, X. Zhang, Heat treated tethered iron phthalocyanine carbon nanotube-based catalysts for oxygen reduction reaction in hybrid fuel cells. Electrochim. Acta 257, 224–232 (2017)

    Article  CAS  Google Scholar 

  38. H. Li, F. Cheng, A.M. Duft, A. Adronov, Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J. Am. Chem. Soc. 127, 14518–14524 (2005)

    Article  CAS  Google Scholar 

  39. S. Campidelli, B. Ballesteros, A. Filoramo, D. Díaz Díaz, G. de la Torre, T. Torres, G.M. Aminur Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D.M. Guldi, C. Cioffi, M. Prato, J. Bourgoin, Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”. J. Am. Chem. Soc. 130, 11503–11509 (2008)

    Article  CAS  Google Scholar 

  40. M. Hu, X. Chen, S. Chen, T. Ou, M. Yao, L. Gu, Z. Huang, J. Tan. A new application of click chemistry in situ: development of fluorescent probe for specific G-quadruplex topology. Sci. Rep. 5, 17202 (2015)

    Article  CAS  Google Scholar 

  41. Z. Liu, G. Xu, M. Zhang, K. Xiong, P. Meng, Synthesis of CoFe2O4/RGO nanocomposites by click chemistry and electromagnetic wave absorption properties. J. Mater. Sci.: Mater. Electron. 27, 9278–9285 (2016)

    CAS  Google Scholar 

  42. S. Rana, H. Yoo, J. Cho, B. Chun, J. Park, Functionalization of multi-walled carbon nanotubes with poly(ε-caprolactone) using click chemistry. J. Appl. Polym. Sci. 199(1), 31–37 (2010)

    Article  Google Scholar 

  43. Z. Wei, L. Du, L. Wang, Cross-linking carbon nanotubes by glycidyl azide polymer via click chemistry. J. Nanosci. Nanotechnol. 12(1), 787–792 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Nos. 51622805 and U1633116) and the opening fund for the subject of Transportation Engineering in Tongji University (2016J012306). The authors are grateful to these financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenglong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yu, J., Fu, K. et al. Facile preparation of asymmetric phthalocyanine/multi-walled carbon nanotube hybrid material by in situ click chemistry. J Mater Sci: Mater Electron 29, 21078–21087 (2018). https://doi.org/10.1007/s10854-018-0255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0255-y

Navigation