Skip to main content

Advertisement

Log in

Substantial effect of Pd incorporation on the room temperature hydrogen sensing performance of ZnO/ITO nanowires prepared by spray pyrolysis method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The room temperature hydrogen sensing characteristics of Pd-decorated ZnO nanowires was fabricated on ITO substrate by spray pyrolysis technique. The crystal structure revealed that the Pd dopants were well integrated into ZnO wurtzite lattice. The average crystallite size decreased with increasing Pd dopant concentration. The band gap energies of the ZnO films were affected by the Pd concentration. The blue shift in the PL emission of Pd:ZnO film signify the modulation of band gap caused by Pd addition. The morphology of ZnO films changed from nanotubes to nanowires with Pd dopant concentration. The gas sensing measurement results demonstrated that the Pd:ZnO/ITO sensor revealed good response even for low concentration of H2, with characteristics reliant on the morphology, size of the grains and the increasing incorporation of Pd concentration. A doping level of 2 at.% palladium in ZnO was found to give optimum response. The lowest detection limit of hydrogen was found to be100 ppm. We strongly believe that the Pd:ZnO sensor with ITO underlayer can be widely used for selective hydrogen gas detection. It can be summarized that this high performance H2 sensor has potential for use as a portable room temperature gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Wu, H. Zhou, M. Hao, X. Wei, S. Li, H. Yu, X. Wang, Z. Chen, Fast response hydrogen sensors based on anodic aluminum oxide with pore-widening treatment. Appl. Surf. Sci. 380, 47–51 (2016)

    Article  CAS  Google Scholar 

  2. H. Gu, Z. Wang, Y. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 12, 5517–5550 (2012)

    Article  CAS  Google Scholar 

  3. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)

    Article  CAS  Google Scholar 

  4. I. Iatsunskyi, A. Vasylenko, R. Viter, M. Kempinski, G. Nowaczyk, S. Jurga, M. Bechelany, Tailoring of the electronic properties of ZnO-polyacrylonitrile nanofibers: experiment and theory. Appl. Surf. Sci. 411, 494–501 (2017)

    Article  CAS  Google Scholar 

  5. A.O. Ibhadon, P. Fitzpatrick, H. Photocatalysis, Recent advances and applications. Catalysts 3, 189–218 (2013)

    Article  CAS  Google Scholar 

  6. R. Vinodkumar, K.J. Lethy, D. Beena, A.P. Detty, I. Navas, U.V. Nayar, V.P. Mahadevan Pillai, V. Ganesan, V.R. Reddy, Effect of ITO buffer layer on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique. Sol. Energy Mater. Sol. Cells 94, 68–74 (2010)

    Article  CAS  Google Scholar 

  7. M. Gautam, A.H. Jayatissa, Gas sensing properties of graphene synthesized by chemical vapor deposition. Mater. Sci. Eng. C 31, 1405–1411 (2011)

    Article  CAS  Google Scholar 

  8. J. Molarius, J. Katiila, T. Pensala, M. Ylilammi, Piezoelectric ZnO films by r.f. sputtering. J. Mater. Sci. Mater. Electron. 14, 431–435 (2003)

    Article  CAS  Google Scholar 

  9. M.F. Jawad, R.A. Ismail, K.Z. Yahea, Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 22, 1244–1247 (2011)

    Article  CAS  Google Scholar 

  10. N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, ZnO thin films deposition by spray pyrolysis: influence of precursor solution properties. Curr. Appl. Phys. 12, 1283–1287 (2012)

    Article  Google Scholar 

  11. S. O’Brien, L.H.K. Koh, G.M. Crean, ZnO thin films prepared by a single step sol–gel process. Thin Solid Films 516, 1391–1395 (2008)

    Article  Google Scholar 

  12. R.C. Hoffmann, S. Jia, L.P.H. Jeurgens, J. Bill, F. Aldinger, Influence of polyvinyl pyrrolidone on the formation and properties of ZnO thin films in chemical bath deposition. Mater. Sci. Eng. C 26, 41–45 (2006)

    Article  CAS  Google Scholar 

  13. A. Renitta, K. Vijayalakshmi, Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sens. Actuators B 237, 912–923 (2016)

    Article  CAS  Google Scholar 

  14. C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian, P. Dhamodharan, Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films. Appl. Nanosci. 6, 815–825 (2016)

    Article  CAS  Google Scholar 

  15. N.M. Deraz, A. Alarifi, Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrol. 94, 41–47 (2012)

    Article  CAS  Google Scholar 

  16. P.U. Aparna, N.K. Divya, P.P. Pradyumnan, Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. Mater. Sci. Chem. Eng. 4, 79–88 (2016)

    CAS  Google Scholar 

  17. C.G. Van de Walle, Effects of impurities on the lattice parameters of GaN. Phys. Rev. B 68, 165–209 (2003)

    Article  Google Scholar 

  18. A. Hadri, M. Taibi, A. El hat, A. Mzerd, Transparent and conductive Al/F and In co-doped ZnO thin films deposited by spray pyrolysis. J. Phys. Conf. Ser. 689, 012024 (2016)

    Article  Google Scholar 

  19. D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal. Appl. Pyrol. 127, 38–46 (2017)

    Article  CAS  Google Scholar 

  20. M. Saha, S. Ghosh, V.D. Ashok, S.K. De, Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals. Phys. Chem. Chem. Phys. 17, 16067 (2015)

    Article  CAS  Google Scholar 

  21. B.V. Odari, M. Mageto, R. Musembi, H. Othieno, Francis Gaitho and Valentine Muramba, Optical and electrical properties of Pd doped SnO2 thin films deposited by spray pyrolysis. Aust. J. Basic Appl. Sci. 7, 89–98 (2013)

    CAS  Google Scholar 

  22. V. Sharma, G. Pilania, J.E. Lowther, Ferromagnetism in IV main group element (C) and transition metal (Mn) doped MgO: a density functional perspective. AIP Adv. 1, 032129 (2011)

    Article  Google Scholar 

  23. R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Dev. 2, 51–58 (2017)

    Google Scholar 

  24. Z. Wang, J. Xue, D. Han, F. Gu, Controllable defect redistribution of ZnO nanopyramids with exposed {1011} facets for enhanced gas sensing performance. ACS Appl. Mater. Interfaces 7, 308–317 (2015)

    Article  CAS  Google Scholar 

  25. K. SowriBabu, A. Ramachandra Reddy, C. Sujatha, K. Venugopal Reddy, Optimization of UV emission intensity of ZnO nanoparticles by changing the excitation wavelength. Mater. Lett. 99, 97–100 (2013)

    Article  Google Scholar 

  26. H. Gómez-Pozos, J.L. González-Vidal, G.A. Torres, M. de la Luz Olvera, L. Castañeda, Physical characterization and effect of effective surface area on the sensing properties of tin dioxide thin solid films in a propane atmosphere. Sensors 14 403–415 (2014)

    Article  Google Scholar 

  27. C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35, 1 (2007)

    Article  Google Scholar 

  28. G. Korotcenkov, V. Brinzari, B.K. Cho, Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors. Sens. Actuators B 243, 507–515 (2017)

    Article  CAS  Google Scholar 

  29. S.-J. Liu, Y. Yuan, S.-L. Zheng, J.-H. Zhang, Y. Wang, Fabrication of C-doped WO3 nanoparticle clusterarrays from PS-b-P4VP for room temperatureH2 sensing. Dalton Trans. 44, 11360–11367 (2015)

    Article  CAS  Google Scholar 

  30. T.-R. Rashid, D.-T. Phan, G.-S. Chung, Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens. Actuators B 193, 869–876 (2014)

    Article  CAS  Google Scholar 

  31. A. Sanger, A. Kumar, A. Kumar, R. Chandra, Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens. Actuators B 234, 8–14 (2016)

    Article  CAS  Google Scholar 

  32. S. Kabcum, D. Channei, A. Tuantranont, A. Wisitsoraat, C. Liewhiran, S. Phanichphant, Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods. Sens. Actuators B 226, 76–89 (2016)

    Article  CAS  Google Scholar 

  33. P.A. Szilagyi, R.J. Westerwaal, R. van de Krol, H. Geerlings, B. Dam, Metal–organic framework thin films for protective coating of Pd-based optical hydrogen sensors. J. Mater. Chem. C 1, 8146 (2013)

    Article  CAS  Google Scholar 

  34. A. Sanger, A. Kumar, A. Kumar, J. Jaiswal, R. Chandra, A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing. Sens. Actuators B 236, 16–26 (2016)

    Article  CAS  Google Scholar 

  35. S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond, Electronics, 4 (2015) 651–687

    Article  CAS  Google Scholar 

  36. Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, T. Wang, High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide. J. Mater. Chem. A 3, 1317–1324 (2015)

    Article  CAS  Google Scholar 

  37. L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B. Roldan Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sonteac, A. Schulte, Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sens. Actuators A 189, 399 (2013)

    Article  CAS  Google Scholar 

  38. C.S. Rout, A.R. Raju, A. Govindaraj, C.N.R. Rao, Hydrogen sensors based on ZnO nanoparticles. Solid State Commun. 138, 136 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University Grants Commission (Maulana Azad National Fellowship (F1-17.1/2015-16/MANF-2015-17-TAM-56396)) New Delhi, India, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijayalakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, K., Renitta, A. & Monamary, A. Substantial effect of Pd incorporation on the room temperature hydrogen sensing performance of ZnO/ITO nanowires prepared by spray pyrolysis method. J Mater Sci: Mater Electron 29, 21023–21032 (2018). https://doi.org/10.1007/s10854-018-0248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0248-x

Navigation