Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 21023–21032 | Cite as

Substantial effect of Pd incorporation on the room temperature hydrogen sensing performance of ZnO/ITO nanowires prepared by spray pyrolysis method

  • K. VijayalakshmiEmail author
  • A. Renitta
  • A. Monamary
Article

Abstract

The room temperature hydrogen sensing characteristics of Pd-decorated ZnO nanowires was fabricated on ITO substrate by spray pyrolysis technique. The crystal structure revealed that the Pd dopants were well integrated into ZnO wurtzite lattice. The average crystallite size decreased with increasing Pd dopant concentration. The band gap energies of the ZnO films were affected by the Pd concentration. The blue shift in the PL emission of Pd:ZnO film signify the modulation of band gap caused by Pd addition. The morphology of ZnO films changed from nanotubes to nanowires with Pd dopant concentration. The gas sensing measurement results demonstrated that the Pd:ZnO/ITO sensor revealed good response even for low concentration of H2, with characteristics reliant on the morphology, size of the grains and the increasing incorporation of Pd concentration. A doping level of 2 at.% palladium in ZnO was found to give optimum response. The lowest detection limit of hydrogen was found to be100 ppm. We strongly believe that the Pd:ZnO sensor with ITO underlayer can be widely used for selective hydrogen gas detection. It can be summarized that this high performance H2 sensor has potential for use as a portable room temperature gas sensor.

Notes

Acknowledgements

This work was financially supported by the University Grants Commission (Maulana Azad National Fellowship (F1-17.1/2015-16/MANF-2015-17-TAM-56396)) New Delhi, India, which is gratefully acknowledged.

References

  1. 1.
    S. Wu, H. Zhou, M. Hao, X. Wei, S. Li, H. Yu, X. Wang, Z. Chen, Fast response hydrogen sensors based on anodic aluminum oxide with pore-widening treatment. Appl. Surf. Sci. 380, 47–51 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Gu, Z. Wang, Y. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 12, 5517–5550 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)CrossRefGoogle Scholar
  4. 4.
    I. Iatsunskyi, A. Vasylenko, R. Viter, M. Kempinski, G. Nowaczyk, S. Jurga, M. Bechelany, Tailoring of the electronic properties of ZnO-polyacrylonitrile nanofibers: experiment and theory. Appl. Surf. Sci. 411, 494–501 (2017)CrossRefGoogle Scholar
  5. 5.
    A.O. Ibhadon, P. Fitzpatrick, H. Photocatalysis, Recent advances and applications. Catalysts 3, 189–218 (2013)CrossRefGoogle Scholar
  6. 6.
    R. Vinodkumar, K.J. Lethy, D. Beena, A.P. Detty, I. Navas, U.V. Nayar, V.P. Mahadevan Pillai, V. Ganesan, V.R. Reddy, Effect of ITO buffer layer on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique. Sol. Energy Mater. Sol. Cells 94, 68–74 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Gautam, A.H. Jayatissa, Gas sensing properties of graphene synthesized by chemical vapor deposition. Mater. Sci. Eng. C 31, 1405–1411 (2011)CrossRefGoogle Scholar
  8. 8.
    J. Molarius, J. Katiila, T. Pensala, M. Ylilammi, Piezoelectric ZnO films by r.f. sputtering. J. Mater. Sci. Mater. Electron. 14, 431–435 (2003)CrossRefGoogle Scholar
  9. 9.
    M.F. Jawad, R.A. Ismail, K.Z. Yahea, Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 22, 1244–1247 (2011)CrossRefGoogle Scholar
  10. 10.
    N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, ZnO thin films deposition by spray pyrolysis: influence of precursor solution properties. Curr. Appl. Phys. 12, 1283–1287 (2012)CrossRefGoogle Scholar
  11. 11.
    S. O’Brien, L.H.K. Koh, G.M. Crean, ZnO thin films prepared by a single step sol–gel process. Thin Solid Films 516, 1391–1395 (2008)CrossRefGoogle Scholar
  12. 12.
    R.C. Hoffmann, S. Jia, L.P.H. Jeurgens, J. Bill, F. Aldinger, Influence of polyvinyl pyrrolidone on the formation and properties of ZnO thin films in chemical bath deposition. Mater. Sci. Eng. C 26, 41–45 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Renitta, K. Vijayalakshmi, Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sens. Actuators B 237, 912–923 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian, P. Dhamodharan, Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films. Appl. Nanosci. 6, 815–825 (2016)CrossRefGoogle Scholar
  15. 15.
    N.M. Deraz, A. Alarifi, Structural, morphological and magnetic properties of nano-crystalline zinc substituted cobalt ferrite system. J. Anal. Appl. Pyrol. 94, 41–47 (2012)CrossRefGoogle Scholar
  16. 16.
    P.U. Aparna, N.K. Divya, P.P. Pradyumnan, Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. Mater. Sci. Chem. Eng. 4, 79–88 (2016)Google Scholar
  17. 17.
    C.G. Van de Walle, Effects of impurities on the lattice parameters of GaN. Phys. Rev. B 68, 165–209 (2003)CrossRefGoogle Scholar
  18. 18.
    A. Hadri, M. Taibi, A. El hat, A. Mzerd, Transparent and conductive Al/F and In co-doped ZnO thin films deposited by spray pyrolysis. J. Phys. Conf. Ser. 689, 012024 (2016)CrossRefGoogle Scholar
  19. 19.
    D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal. Appl. Pyrol. 127, 38–46 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Saha, S. Ghosh, V.D. Ashok, S.K. De, Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals. Phys. Chem. Chem. Phys. 17, 16067 (2015)CrossRefGoogle Scholar
  21. 21.
    B.V. Odari, M. Mageto, R. Musembi, H. Othieno, Francis Gaitho and Valentine Muramba, Optical and electrical properties of Pd doped SnO2 thin films deposited by spray pyrolysis. Aust. J. Basic Appl. Sci. 7, 89–98 (2013)Google Scholar
  22. 22.
    V. Sharma, G. Pilania, J.E. Lowther, Ferromagnetism in IV main group element (C) and transition metal (Mn) doped MgO: a density functional perspective. AIP Adv. 1, 032129 (2011)CrossRefGoogle Scholar
  23. 23.
    R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Dev. 2, 51–58 (2017)Google Scholar
  24. 24.
    Z. Wang, J. Xue, D. Han, F. Gu, Controllable defect redistribution of ZnO nanopyramids with exposed {1011} facets for enhanced gas sensing performance. ACS Appl. Mater. Interfaces 7, 308–317 (2015)CrossRefGoogle Scholar
  25. 25.
    K. SowriBabu, A. Ramachandra Reddy, C. Sujatha, K. Venugopal Reddy, Optimization of UV emission intensity of ZnO nanoparticles by changing the excitation wavelength. Mater. Lett. 99, 97–100 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Gómez-Pozos, J.L. González-Vidal, G.A. Torres, M. de la Luz Olvera, L. Castañeda, Physical characterization and effect of effective surface area on the sensing properties of tin dioxide thin solid films in a propane atmosphere. Sensors 14 403–415 (2014)CrossRefGoogle Scholar
  27. 27.
    C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35, 1 (2007)CrossRefGoogle Scholar
  28. 28.
    G. Korotcenkov, V. Brinzari, B.K. Cho, Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors. Sens. Actuators B 243, 507–515 (2017)CrossRefGoogle Scholar
  29. 29.
    S.-J. Liu, Y. Yuan, S.-L. Zheng, J.-H. Zhang, Y. Wang, Fabrication of C-doped WO3 nanoparticle clusterarrays from PS-b-P4VP for room temperatureH2 sensing. Dalton Trans. 44, 11360–11367 (2015)CrossRefGoogle Scholar
  30. 30.
    T.-R. Rashid, D.-T. Phan, G.-S. Chung, Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens. Actuators B 193, 869–876 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Sanger, A. Kumar, A. Kumar, R. Chandra, Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens. Actuators B 234, 8–14 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Kabcum, D. Channei, A. Tuantranont, A. Wisitsoraat, C. Liewhiran, S. Phanichphant, Ultra-responsive hydrogen gas sensors based on PdO nanoparticle-decorated WO3 nanorods synthesized by precipitation and impregnation methods. Sens. Actuators B 226, 76–89 (2016)CrossRefGoogle Scholar
  33. 33.
    P.A. Szilagyi, R.J. Westerwaal, R. van de Krol, H. Geerlings, B. Dam, Metal–organic framework thin films for protective coating of Pd-based optical hydrogen sensors. J. Mater. Chem. C 1, 8146 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Sanger, A. Kumar, A. Kumar, J. Jaiswal, R. Chandra, A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing. Sens. Actuators B 236, 16–26 (2016)CrossRefGoogle Scholar
  35. 35.
    S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond, Electronics, 4 (2015) 651–687CrossRefGoogle Scholar
  36. 36.
    Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, T. Wang, High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide. J. Mater. Chem. A 3, 1317–1324 (2015)CrossRefGoogle Scholar
  37. 37.
    L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B. Roldan Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sonteac, A. Schulte, Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sens. Actuators A 189, 399 (2013)CrossRefGoogle Scholar
  38. 38.
    C.S. Rout, A.R. Raju, A. Govindaraj, C.N.R. Rao, Hydrogen sensors based on ZnO nanoparticles. Solid State Commun. 138, 136 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Department of PhysicsBishop Heber CollegeTiruchirappalliIndia

Personalised recommendations