Skip to main content
Log in

Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The monophasic polycrystalline ceramic perovskite-based Eu2Bi2Fe4O12 was synthesized by the solid-state reaction method. X-ray diffraction measurements in the Bragg–Brentano geometry and Rietveld analysis reveal that this material crystallizes in an orthorhombic structure with Pnma (#62) space group. Average grain size of 450 nm is calculated of a log-normal distribution and obtained by means scanning electron microscopy images. Results from magnetization, pyroelectric and complex impedance measurements as a function of temperature (50 K up to 300 K) show the occurrence of dielectric and magnetic relaxation process starting simultaneously at 112.8 K. The tendency of real and imaginary curves of the dielectric permittivity at temperatures close to room temperature has also shown strong ac conductivity contributions attributed to porosity effects. The magnetization hysteresis loop at room temperature confirms that this new perovskite-based material has a ferromagnetic response. Signature of superparamagnetism effects is also observed as a consequence of the nanometric grain size. Thermostimulated current measurements as a function of temperature reveal the occurrence of ferroelectric polarization for the temperature regime below T = 112.8 K. Diffuse reflectance experiments permitted to establish the semiconductor nature of this material at room temperature with an energy gap of 2.65 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Dogan, H. Lin, M. Guilloux-Viry, O. Peña, Sci. Technol. Adv. Mater. 16, 020301 (2015)

    Article  Google Scholar 

  2. R.J.D. Tilley, Perovskites: Structure–Properties Relationships. (Wiley, Hoboken, 2016), pp. 42–57

    Book  Google Scholar 

  3. M.W. Lufaso, P.W. Barnes, P.M. Woodward, Acta Cryst. B62, 397 (2006)

    Article  CAS  Google Scholar 

  4. J. Lu, A. Günther, F. Schrettle, F. Mayr, S. Krohns, P. Lunkenheimer, A. Pimenov, V.D. Travkin, A.A. Mukhin, A. Loidl, Eur. Phys. J. B 75, 451 (2010)

    Article  CAS  Google Scholar 

  5. D.-C. Jia, J.-H. Xu, H. Ke, W. Wang, Y. Zhou, J. Eur. Ceram. Soc. 29, 3099 (2009)

    Article  CAS  Google Scholar 

  6. J. Wu, S. Mao, Z.-G. Ye, Z. Xie, L. Zheng, J. Mater. Chem. 20, 6512 (2010)

    Article  CAS  Google Scholar 

  7. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  CAS  Google Scholar 

  8. S. Zhu, Y. Gu, Y. Xiong, X. Zhou, Y. Liu, Y. Wang, W. Chen, J. Adv. Ceram. 5, 204 (2016)

    Article  CAS  Google Scholar 

  9. F. Gonzalez Garcia, C.S. Riccardib, A.Z. Simões, J. Alloys. Compd. 501, 25 (2010)

    Article  CAS  Google Scholar 

  10. P. Trivedia. S. Katba, S. Jethva, M. Udeshi, B. Vyas, M. Vagadia, S. Gautam, K.H. Chae, K. Asokan, D.G. Kuberkar, Solid Stat. Commun. 222, 5 (2015)

    Article  Google Scholar 

  11. M.V. Kumar, K. Kuribayashi, J. Yu, J.T. Okada, T. Ishikawa, J. Am. Ceram. Soc. 96, 995 (2013)

    Article  CAS  Google Scholar 

  12. R.L. White, J. Appl. Phys. 40, 1061 (1969)

    Article  CAS  Google Scholar 

  13. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    Article  CAS  Google Scholar 

  14. A.C. Larson, R.B. Von Dreele, General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2000)

  15. B.H. Toby, J. Appl. Cryst. 34, 210 (2001)

    Article  CAS  Google Scholar 

  16. A.M. Glazer, Acta Crystallogr. 31, 756 (1975)

    Article  Google Scholar 

  17. H.T. Stokes, H. Erich, Acta Crystallogr. 58, 934 (2006)

    Article  Google Scholar 

  18. C.A. Triana, D.A. Landínez Téllez, J. Roa-Rojas, J. Alloys. Compd. 516, 179 (2012)

    Article  CAS  Google Scholar 

  19. A. Kumar, D. Pandey, Condens. Matter Mater. Sci. 1–31 (2016)

  20. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B Cover. Condens. Matter Mater. Phys. 66, 521051 (2002)

    Google Scholar 

  21. R. Stumpe, D. Wagner, D. Bäuerle, Phys. Status Solidi A 75, 143 (1983)

    Article  CAS  Google Scholar 

  22. L.K. Sudha, S. Roy, K.U. Rao, Int. J. Mater. Mech. Manuf. 2, 96 (2014)

    Google Scholar 

  23. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  CAS  Google Scholar 

  24. Y. Nomura, T. Tachi, T. Kawae, A. Morimoto, Phys. Status Solidi B 252, 833 (2015)

    Article  CAS  Google Scholar 

  25. A. Perejón, N. Masó, A. West, P. Sánchez, R. Poyato, J. Criado, P. Luis, J. Am. Ceram. Soc. 96, 1220 (2013)

    Article  Google Scholar 

  26. U. Dash, S. Sahoo, P. Chaudhuri, S.K.S. Parashar, K. Parashar, J. Adv. Ceram. 3, 89 (2014)

    Article  CAS  Google Scholar 

  27. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084107 (2005)

    Article  Google Scholar 

  28. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)

    Article  CAS  Google Scholar 

  29. Y. Yao, W. Liu, Y. Chan, C. Leung, C. Mak, B. Ploss, Int. J. Appl. Ceram. Technol. 8, 1246 (2011)

    Article  CAS  Google Scholar 

  30. S.A.T. Redfern, C. Wang, J.W. Hong, G. Catalan, J.F. Scott, J. Phys. 20, 1 (2008)

    Google Scholar 

  31. W. Wang, L.-Q. Yan, J.-Z. Cong, Y.-L. Zhao, F. Wang, S.-P. Shen, T. Zou, D. Zhang, S.-G. Wang, X.-F. Han, Y. Sun, Sci. Rep. 3, 2024 (2013)

    Article  CAS  Google Scholar 

  32. J.-P. Zhou, Y.-X. Zhang, Q. Liu, P. Liu, Acta Mater. 76, 355 (2014)

    Article  CAS  Google Scholar 

  33. A.A. Amirov, Y.A. Chaudhari, S.T. Bendre, K.A. Chichay, V.V. Rodionova, D.M. Yusupov, Z.M. Omarov, Eur. Phys. J. B 91, 63 (2018)

    Article  Google Scholar 

  34. M. Sorescu, T. Xu, A. Hannan, Am. J. Mater. Sci. 1, 57 (2011)

    Google Scholar 

  35. S. Assali, I. Zardo, S. Plissard, D. Kriegner, M.A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J.E.M. Haverkort, E.P.A.M. Bakkers, Nanoletters 13, 1559 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank to Brazilian Funding Agencies CAPES (Procad 2013, Grant #3012/2014), CNPq (Grants Universal #462149/2014-5 and PVE #407547/2013-4), and Colombian Division of Investigations (DIB) and Exteriors Relations Direction (DRE) of Universidad Nacional de Colombia (Bogotá) by the financial support. J.A. Cuervo Farfán also thanks to Departamento Administrativo de Ciencia y Tecnología “Francisco José de Caldas”, COLCIENCIAS, by the PhD student exchange award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roa-Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuervo-Farfán, J.A., Vargas, C.A.P., Viana, D.S.F. et al. Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic. J Mater Sci: Mater Electron 29, 20942–20951 (2018). https://doi.org/10.1007/s10854-018-0238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0238-z

Navigation