Skip to main content

Advertisement

Log in

Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, tailoring the energy band gap (Eg) of ternary alloyed Pb1−xZnxS quantum dots (QDs) for photovoltaic applications has been investigated. Different zinc molar ratios (x: 0, 0.1, 0.2, 0.3 and 0.4) in Pb1−xZnxS QDs were adsorbed onto TiO2 (titania) nanoporous films using sub-sequential chemical deposition technique. The morphology of the prepared QDs is studied using a scanning and transmission electron microscope. The structural properties were measured using an X-ray diffractometer and an energy dispersive X-ray technique. The optical properties were recorded using a UV–visible spectrophotometer. The optical bowing constant (b) of alloyed Pb1−xZnxS has been deduced and equals 1.49 eV. To the best of our knowledge, this is the first time that the bowing constant of alloyed Pb1−xZnxS is determined. The photovoltaic characteristics (short circuit current density Jsc, open circuit voltage Voc, fill factor FF and energy conversion efficiency η) of the assembled alloyed Pb1−xZnxS QDs sensitized solar cells (QDSSCs) are measured under AM1.5 conditions. The optimal photovoltaic parameters of the alloyed Pb1−xZnxS QDSSCs were found at x = 0.2. The open circuit voltage decay of the assembled QDSSCs is measured. This novel result is attributed to suppressing of the electron–hole pairs recombination processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Sharma, R. Jha, S. Kumar, Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)

    Article  CAS  Google Scholar 

  2. A. Badawi, N. Al-Hosiny, S. Abdallah, Superlattices Microstruct. 81, 88–96 (2015)

    Article  CAS  Google Scholar 

  3. A. Badawi, J. Mater. Sci. Mater. Electron. 27, 7899–7907 (2016)

    Article  CAS  Google Scholar 

  4. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Sol. Energy 88, 137–143 (2013)

    Article  CAS  Google Scholar 

  5. S. Wang, W. Dong, X. Fang, S. Wu, R. Tao, Z. Deng, J. Shao, L. Hu, J. Zhu, J. Power Sources 273, 645–653 (2015)

    Article  CAS  Google Scholar 

  6. A. Badawi, N. Al-Hosiny, S. Abdallah, H. Talaat, Mater. Sci.-Pol. 31, 6–13 (2013)

    Article  CAS  Google Scholar 

  7. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Article  CAS  Google Scholar 

  8. A. Badawi, Superlattices Microstruct. 90, 124–131 (2016)

    Article  CAS  Google Scholar 

  9. S.S. Kamble, D.P. Dubal, N.L. Tarwal, A. Sikora, J.H. Jang, L.P. Deshmukh, J. Alloys Compd. 656, 590–597 (2016)

    Article  CAS  Google Scholar 

  10. A. Badawi, Chin. Phys. B 24, 47205–047205 (2015)

    Article  Google Scholar 

  11. J. Cao, Y. Zhao, Y. Zhu, X. Yang, P. Shi, H. Xiao, N. Du, W. Hou, G. Qi, J. Liu, J. Colloid Interface Sci. 498, 223–228 (2017)

    Article  CAS  Google Scholar 

  12. A. Badawi, N. Al-Hosiny, A. Merazga, A.M. Albaradi, S. Abdallah, H. Talaat, Superlattices Microstruct. 100, 694–702 (2016)

    Article  CAS  Google Scholar 

  13. J. Tian, T. Shen, X. Liu, C. Fei, L. Lv, G. Cao, Sci. Rep. 6, 23094 (2016)

    Article  CAS  Google Scholar 

  14. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, G.J. Wang, Electrochem. Commun. 12, 1158–1160 (2010)

    Article  CAS  Google Scholar 

  15. C. Yuan, L. Li, J. Huang, Z. Ning, L. Sun, H. Ågren, Nanomaterials 6, 97 (2016)

    Article  Google Scholar 

  16. R.E. Bailey, S. Nie, J. Am. Chem. Soc. 125, 7100–7106 (2003)

    Article  CAS  Google Scholar 

  17. G. Laukaitis, S. Lindroos, S. Tamulevičius, M. Leskelä, M. Račkaitis, Appl. Surf. Sci. 161, 396–405 (2000)

    Article  CAS  Google Scholar 

  18. Z. El-Qahtani, A. Badawi, K. Easawi, N. Al-Hosiny, S. Abdallah, Mater. Sci. Semicond. Process. 20, 68–73 (2014)

    Article  CAS  Google Scholar 

  19. D.A. Reddy, D.H. Kim, S.J. Rhee, B.W. Lee, C. Liu, Nanoscale Res. Lett. 9, 1–8 (2014)

    Article  Google Scholar 

  20. I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, J. Bisquert, Nanotechnology 19, 424007 (2008)

    Article  Google Scholar 

  21. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, J. Mater. Sci. Mater. Electron. 27, 4163–4171 (2016)

    Article  CAS  Google Scholar 

  22. Y. Hu, B. Wang, J. Zhang, T. Wang, R. Liu, J. Zhang, X. Wang, H. Wang, Nanoscale Res. Lett. 8, 222 (2013)

    Article  Google Scholar 

  23. Y.-L. Lee, C.-H. Chang, J. Power Sources 185, 584–588 (2008)

    Article  CAS  Google Scholar 

  24. N.B. Rahna, V. Kalarivalappil, M. Nageri, S.C. Pillai, S.J. Hinder, V. Kumar, B.K. Vijayan, Mater. Sci. Semicond. Process. 42(Part 3), 303–310 (2016)

    Article  CAS  Google Scholar 

  25. P. Lv, W. Fu, Y. Mu, H. Sun, S. Su, Y. Chen, H. Yao, D. Ding, T. Liu, J. Wang, H. Yang, J. Alloys Compd. 621, 30–34 (2015)

    Article  CAS  Google Scholar 

  26. S. Ravishankar, A.R. Balu, Surf. Eng. 33, 506–511 (2017)

    Article  CAS  Google Scholar 

  27. G.-L. Tan, L. Liu, W. Wu, AIP Adv. 4, 067107 (2014)

    Article  Google Scholar 

  28. E. Rabinovich, E. Wachtel, G. Hodes, Thin Solid Films 517, 737–744 (2008)

    Article  CAS  Google Scholar 

  29. T. Sivaraman, V. Narasimman, V.S. Nagarethinam, A.R. Balu, Prog. Nat. Sci.: Mater. Int. 25, 392–398 (2015)

    Article  CAS  Google Scholar 

  30. A.A. Dakhel, Sol. Energy 82, 513–519 (2008)

    Article  CAS  Google Scholar 

  31. O. Madelung, Semiconductors: Data Handbook, 3rd edn. (Springer, Berlin, 2004), p. 691

    Book  Google Scholar 

  32. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, J. Mater. Sci. Mater. Electron. 28, 10877–10884 (2017)

    Article  CAS  Google Scholar 

  33. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mol. Struct. 1136, 321–329 (2017)

    Article  CAS  Google Scholar 

  34. M. Anbarasi, V.S. Nagarethinam, R. Baskaran, V. Narasimman, Pac. Sci. Rev. A: Nat. Sci. Eng. 18, 72–77 (2016)

    Google Scholar 

  35. L.A. Swafford, L.A. Weigand, M.J.B. II, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, J. Am. Chem. Soc. 128, 12299–12306 (2006)

    Article  CAS  Google Scholar 

  36. Y.-K. Kuo, H.-Y. Chu, S.-H. Yen, B.-T. Liou, M.-L. Chen, Opt. Commun. 280, 153–156 (2007)

    Article  CAS  Google Scholar 

  37. M. Marques, L.K. Teles, L.M.R. Scolfaro, J.R. Leite, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 83, 890–892 (2003)

    Article  CAS  Google Scholar 

  38. M. Moret, B. Gil, S. Ruffenach, O. Briot, C. Giesen, M. Heuken, S. Rushworth, T. Leese, M. Succi, J. Cryst. Growth 311, 2795–2797 (2009)

    Article  CAS  Google Scholar 

  39. Y.-K. Kuo, B.-T. Liou, S.-H. Yen, H.-Y. Chu, Opt. Commun. 237, 363–369 (2004)

    Article  CAS  Google Scholar 

  40. J. Xu, X. Yang, H. Wang, X. Chen, C. Luan, Z. Xu, Z. Lu, V.A.L. Roy, W. Zhang, C.-S. Lee, Nano Lett. 11, 4138–4143 (2011)

    Article  CAS  Google Scholar 

  41. S. Chattopadhyaya, R. Bhattacharjee, J. Phys. Chem. Solids 100, 57–70 (2017)

    Article  CAS  Google Scholar 

  42. P. Srathongluan, V. Vailikhit, P. Teesetsopon, S. Choopun, A. Tubtimtae, J. Colloid Interface Sci. 481, 57–68 (2016)

    Article  CAS  Google Scholar 

  43. W. Lee, J. Lee, S.K. Min, T. Park, W. Yi, S.-H. Han, Mater. Sci. Eng.: B 156, 48–51 (2009)

    Article  CAS  Google Scholar 

  44. J. Duan, H. Zhang, Q. Tang, B. He, L. Yu, J. Mater. Chem. A 3, 17497–17510 (2015)

    Article  CAS  Google Scholar 

  45. K.K. Nanda, F.E. Kruis, H. Fissan, S.N. Behera, J. Appl. Phys. 95, 5035–5041 (2004)

    Article  CAS  Google Scholar 

  46. T. Xu, F. Zou, Y. Yu, J. Zhi, Mater. Lett. 96, 8–11 (2013)

    Article  CAS  Google Scholar 

  47. N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, H. Talaat, Mater. Sci. Semicond. Process. 26, 238–243 (2014)

    Article  CAS  Google Scholar 

  48. J. Chang, T. Oshima, S. Hachiya, K. Sato, T. Toyoda, K. Katayama, S. Hayase, Q. Shen, Sol. Energy 122, 307–313 (2015)

    Article  CAS  Google Scholar 

  49. J. Kim, H. Choi, C. Nahm, C. Kim, S. Nam, S. Kang, D.-R. Jung, J.I. Kim, J. Kang, B. Park, J. Power Sources 220, 108–113 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank king Abdulaziz City for Science and Technology (KACST) for their financial support (Grant Project No. AT-38-23). The Quantum Optics group (QORG) at Taif University is also thanked for their assistance during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A., Al Otaibi, A.H., Albaradi, A.M. et al. Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications. J Mater Sci: Mater Electron 29, 20914–20922 (2018). https://doi.org/10.1007/s10854-018-0235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0235-2

Navigation