Skip to main content
Log in

Interphase volume calculation of polyimide/TiO2 nanofibers nanocomposite based on dielectric constant model and its effect on glass transition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work demonstrates the significant interphase region of polyimide/titanium dioxide nanofiber nanocomposite. Interphase characteristics of nanocomposites were calculated using Interphase Power Model. It revealed that the interphase volume fraction and interphase dielectric constant were proportionately increased with filler loading at least up to 20%. The increasing trend of interphase dielectric constant signifies a loosely bounded polymeric chain onto the filler surfaces giving the interphase volume constant k as 2.05. However, the ratio of interphase volume to that of the filler volume progressively decreased which was attributed to the effect of agglomeration of filler and percolation of overlapping interphase region to yield an average interphase thickness of 81 ± 10 nm. By designing the complex function of interfacial interaction through the surface activity between the filler and matrix, the interphase region can be appropriately monitored in understanding its effects on glass transition and dielectric constant of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Alias, Z. Ahmad, A.B. Ismail, Mater. Sci. Eng. B 176, 799 (2011)

    Article  CAS  Google Scholar 

  2. N.G. Devaraju, E.S. Kim, B.I. Lee, Microelectron. Eng. 82, 71 (2005)

    Article  CAS  Google Scholar 

  3. Z.M. Dang, Y.Q. Lin, H.P. Xu, C.Y. Shi, S.T. Li, J.B. Bai, Adv. Funct. Mater. 18, 1509 (2008)

    Article  CAS  Google Scholar 

  4. C. Lin, D. Kuo, F. Sie, J. Cheng, G. Liou, Polym. J. 44, 1131 (2012)

    Article  CAS  Google Scholar 

  5. X. Liu, J. Yin, M. Chen, Y. Feng, G. Li, in Int. Conf. Electric Mech. Eng. Inf. Technol. (2011), pp. 2037–2039

  6. Y. Feng, J. Yin, M. Chen, M. Song, B. Su, Q. Lei, Mater. Lett. 96, 113 (2013)

    Article  CAS  Google Scholar 

  7. S. Wang, Y. Wang, K. Cheng, J. Chen, Y. Hsaio, Electron. Mater. 37, 925 (2008)

    Article  CAS  Google Scholar 

  8. X. Li, G. Wang, L. Huang, X. Kang, F. Cheng, Mater. Lett. 148, 22 (2015)

    Article  CAS  Google Scholar 

  9. J. Wang, Y. Long, Y. Sun, X. Zhang, H. Yang, B. Lin, J. Mater. Sci. Mater. Electron. 29, 7842 (2018)

    Article  CAS  Google Scholar 

  10. J. Wang, Y. Long, Y. Sun, X. Zhang, H. Yang, B. Lin, Appl. Surf. Sci. 426, 437 (2017)

    Article  CAS  Google Scholar 

  11. T. Apeldorn, C. Keilholz, V. Altst, Appl. Polym. Sci. 28, 3758 (2013)

    Article  Google Scholar 

  12. J. Zha, Z. Dang, T. Zhou, H. Song, G. Chen, Synth. Met. 160, 2670 (2010)

    Article  CAS  Google Scholar 

  13. Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.-W. Nan, J. Mater. Chem. 22, 8063 (2012)

    Article  CAS  Google Scholar 

  14. Z. Wang, J.K. Nelson, J. Miao, R.J. Linhardt, L.S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 19, 960 (2012)

    Article  CAS  Google Scholar 

  15. M. Todd, F. Shi, in 2004 1st IEEE Consum. Commun. Netw. Conf. (IEEE Cat. No. 04EX745), (2004), pp. 112–117

  16. P. Rittigstein, J.M. Torkelson, Wiley Intersci. 44, 2935 (2006)

    CAS  Google Scholar 

  17. R. Qiao, H. Deng, K.W. Putz, L.C. Brinson, J. Polym. Phys. 49, 740 (2011)

    Article  CAS  Google Scholar 

  18. S.K. Sharma, J. Prakash, K. Sudarshan, D. Sen, S. Mazumder, P.K. Pujari, Macromolecules 48, 5706 (2015)

    Article  CAS  Google Scholar 

  19. K.I. Winey, R.A. Vaia, MRS Bull. 32, 314 (2007)

    Article  CAS  Google Scholar 

  20. X. Liu, Y. Wu, X. Wang, R. Li, Z. Zhang, J. Phys. D Appl. Phys. 44, 115402 (2011)

    Article  Google Scholar 

  21. Y. Liu, A.-L. Hamon, P. Haghi-Ashtiani, T. Reiss, B. Fan, D. He, J. Bai, ACS Appl. Mater. Interfaces 8, 34151 (2016)

    Article  CAS  Google Scholar 

  22. C.J. Ellison, O.N. Torkeson, J. Nat. Mater. 2, 695 (2003)

    Article  CAS  Google Scholar 

  23. C.P. Wong, T. Marinis, J. Qu, Y. Rao, IEEE Trans. Compon. Packag. Technol. 23, 680 (2000)

    Article  Google Scholar 

  24. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.C. Zur Loye, Materials 2, 1697 (2009)

    Article  CAS  Google Scholar 

  25. M. Tuhkala, J. Juuti, M. Teirikangas, H. Jantunen, J. Appl. Phys. 117, 064103 (2015)

    Article  Google Scholar 

  26. M.G. Todd, F.G. Shi, IEEE Trans. Dielectr. Electr. Insul. 12, 601 (2005)

    Article  Google Scholar 

  27. R. Qiao, L.C. Brinson, Compos. Sci. Technol. 69, 491 (2009)

    Article  CAS  Google Scholar 

  28. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  CAS  Google Scholar 

  29. N.A.M. Nor, J. Jaafar, A.F. Ismail, M.A. Mohamed, M.A. Rahman, M.H.D. Othman, W.J. Lau, N. Yusof, Desalination 391, 89 (2016)

    Article  CAS  Google Scholar 

  30. J.-Y. Park, I.-H. Lee, J. Nanosci. Nanotechnol. 10, 3402 (2010)

    Article  CAS  Google Scholar 

  31. B. Caratão, E. Carneiro, P. Sá, B. Almeida, S. Carvalho, J. Nanotechnol. 2014, 472132 (2014)

    Article  Google Scholar 

  32. D. Li, Y. Xia, Nano Lett. 3, 555 (2003)

    Article  CAS  Google Scholar 

  33. A.N. Netravali, K.L. Mittal, Interface/interphase in polymer nanocomposites (Scrivener publishing, Beverly, 2017)

    Google Scholar 

  34. M.T. Sebastian, Appl. Ceram. Technol. 7, 415 (2010)

    CAS  Google Scholar 

  35. S. Chisca, V.E. Musteata, I. Sava, M. Bruma, Eur. Polym. J. 47, 1186 (2011)

    Article  CAS  Google Scholar 

  36. M. Todd, F. Shi, J. Appl. Phys. 94, 4552 (2003)

    Google Scholar 

  37. M. Ezzat, N.A. Sabiha, M. Izzularab, Appl. Nanosci. 4, 331 (2014)

    Article  CAS  Google Scholar 

  38. H.L. Tyan, Y.C. Liu, K.H. Wei, Polymer 40, 4877 (1999)

    Article  CAS  Google Scholar 

  39. H. Ahmadizadegan, J. Colloid Interface Sci. 491, 390 (2017)

    Article  CAS  Google Scholar 

  40. C.D. Wood, A. Ajdari, C.W. Burkhart, K.W. Putz, L.C. Brinson, Compos. Sci. Technol. 127, 88 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the AUN/SEED-Net [Grant Number: 6050315] and RU(I) [Grant Number: 814242] for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulkifli Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lay, M., Meng, S., Ramli, M.R. et al. Interphase volume calculation of polyimide/TiO2 nanofibers nanocomposite based on dielectric constant model and its effect on glass transition. J Mater Sci: Mater Electron 29, 20742–20749 (2018). https://doi.org/10.1007/s10854-018-0215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0215-6

Navigation