Skip to main content
Log in

Network-like CuInS2 photocathode and modified with noble metal co-catalyst for photoelectrochemical water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is of great significance to explore new preparation methods and control the morphology and proportion of metal ions for the photoelectrochemical (PEC) water splitting of ternary sulfide photoelectrode. In this paper, the network-like CuInS2 film photocathodes were firstly prepared by hydrothermal growth method. The effects of different [Cu2+]/[In3+] molar ratios and concentrations of growth solution on CuInS2 films were investigated in detail. The mechanism of the synthetic reaction was studied. The best PEC photocurrent density of the CuInS2 film photoelectrode is − 0.81 mA/cm2 at − 0.6 V versus RHE when the [Cu2+]/[In3+] molar ratio is 0.4, the growth solution concentration is 8 mmol/L CuCl2·2H2O, 20 mmol/L InCl3·4H2O and 60 mmol/L C2H5NS. For the purpose of further improving photoelectrochemical properties of CuInS2 thin films, the Pt co-catalyst was loaded. The synthesized CuInS2–Pt thin film yielded a photocurrent density for − 1.92 mA/cm2 at − 0.6 V versus RHE due to the fast photogenerated electrons capture ability of Pt co-catalyst. The method of constructing photoelectrode film and the co-catalyst mechanism contributes to a sensational way for PEC water splitting of sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Chem. Eng. J. 326, 411–418 (2017)

    Article  CAS  Google Scholar 

  2. Q. Hao, S. Hao, X. Niu, X. Li, D. Chen, H. Ding, Chin. J. Catal. 38, 278–286 (2017)

    Article  CAS  Google Scholar 

  3. Q. Hao, X. Niu, C. Nie, S. Hao, W. Zou, J. Ge, D. Chen, Phys. Chem. Chem. Phys. 18, 31410–31418 (2016)

    Article  CAS  Google Scholar 

  4. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  5. J. Zhang, H. Ma, Z. Liu, Appl. Catal. B. 201, 84–91 (2017)

    Article  CAS  Google Scholar 

  6. Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Z. Lei, Appl. Catal. B. 214, 158–167 (2017)

    Article  CAS  Google Scholar 

  7. Y. Li, T. Takata, D. Cha, Adv. Mater. 25, 125–131 (2013)

    Article  CAS  Google Scholar 

  8. J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, Appl. Catal. B. 163, 179–188 (2015)

    Article  CAS  Google Scholar 

  9. Z. Liu, K. Guo, J. Han, Y. Li, T. Cui, B. Wang, J. Ya, C. Zhou, Small 10, 3153–3161 (2014)

    Article  CAS  Google Scholar 

  10. T. Hisatomi, J. Brillet, M. Cornuz, Faraday. Discuss. 155, 223–232 (2012)

    Article  CAS  Google Scholar 

  11. D. Chen, Z. Liu, M. Zhou, P. Wu, J. Wei, J. Alloys Compd. 742, 918–927 (2018)

    Article  CAS  Google Scholar 

  12. M. Basilio, Y.K. Hsu, W.H. Tu, J. Mater. Chem. 20, 8118–8125 (2010)

    Article  CAS  Google Scholar 

  13. S. Ma, X. Xu, J. Xie, X. Li, Chin. J. Catal. 38, 1970–1980 (2017)

    Article  CAS  Google Scholar 

  14. J. Luo, L. Steier, M.K. Son, Nano Lett. 16, 1848–1857 (2016)

    Article  CAS  Google Scholar 

  15. Q. Liu, Y. Yang, H. Li, R. Zhu, Q. Shao, S. Yang, Biosens. Bioelectron. 64, 147–153 (2015)

    Article  CAS  Google Scholar 

  16. L.J. Zhang, S. Li, B.K. Liu, ACS Catal. 4, 3724–3729 (2014)

    Article  CAS  Google Scholar 

  17. J. Zhao, T. Minegishi, L. Zhang, Angew. Chem. Int. Edit. 53, 11808–11812 (2014)

    Article  CAS  Google Scholar 

  18. D. Lv, D. Zhang, X. Pu, D. Kong, Z. Lu, X. Shao, Sep. Purif. Technol. 174, 97–103 (2017)

    Article  CAS  Google Scholar 

  19. D. DeAngelis, K.C. Kemp, N. Gaillard, ACS Appl. Mater. Interfaces 8, 8445–8451 (2016)

    Article  CAS  Google Scholar 

  20. M.D. Tessier, D. Dupont, K.D. Nolf, J.D. Roo, Z. Hens, Chem. Mater. 27, 4893–4898 (2015)

    Article  CAS  Google Scholar 

  21. K. Kobayakawa, A. Teranishi, T. Tsurumaki, Y. Sato, A. Fujishima, Electrochim. Acta 37, 465–467 (1992)

    Article  CAS  Google Scholar 

  22. L. Zheng, L. Xu, Y. Song, C. Wu, M. Zhang, Y. Xie, Inorg. Chem. 48, 4003–4009 (2009)

    Article  CAS  Google Scholar 

  23. T. Li, C. Cai, T. Yeh, H. Teng, J. Alloys Compd. 550, 326–330 (2013)

    Article  CAS  Google Scholar 

  24. Y. Tang, Y.H. Ng, R. Amal, IEEE. Xplore 45, 2–6 (2014)

    Google Scholar 

  25. E.N. Petuenju, O. Savadogo, J. New Mater. Electron. Syst. 19, 169–179 (2016)

    Article  CAS  Google Scholar 

  26. A. Haris, H. Widiyandari, W. Septina, IOP Conf. Series: Mater. Sci. Eng. 172, 12–21 (2017)

    Google Scholar 

  27. R. Reichert, Z. Jusys, R.J. Behm, J. Phys. Chem. C 119, 24750–24759 (2015)

    Article  CAS  Google Scholar 

  28. Y.S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J. Park, E.W. McFarland, Chem. Mater. 20, 3803–3805 (2008)

    Article  CAS  Google Scholar 

  29. Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, ChemSusChem. 10, 87–90 (2017)

    Article  CAS  Google Scholar 

  30. S. Masudy-Panah, M.R. Siavash, C.S. Chua, A. Kushwaha, G.K. Dalapati, ACS Appl. Mater. Interfaces 9, 27596–27606 (2017)

    Article  CAS  Google Scholar 

  31. S.C. Price, A.C. Stuart, L. Yang, H. Zhou, J. Am. Chem. Soc. 133, 1052–1057 (2011)

    Article  Google Scholar 

  32. X. Yu, A. Shavel, X. An, J. Am. Chem. Soc. 136, 9236–9239 (2014)

    Article  CAS  Google Scholar 

  33. B.K. Patra, A. Shit, A.K. Guria, Chem. Mater. 27, 650–657 (2015)

    Article  CAS  Google Scholar 

  34. L. Wang, N.T. Nguyen, Y. Zhang, Y. Bi, P. Schmuki, ChemSusChem 10, 2720–2727 (2017)

    Article  CAS  Google Scholar 

  35. L. Zhang, Y. Li, C. Li, Q. Chen, Z. Zhen, X. Jiang, M. Zhong, F. Zhang, H. Zhu, ACS Nano 11, 12753–12763 (2017)

    Article  CAS  Google Scholar 

  36. K.C. Kao, Y. Kuroiwa, H. Nishi, T. Tatsuma, Phys. Chem. Chem. Phys. 19, 31429–31435 (2017)

    Article  CAS  Google Scholar 

  37. W. Septina, M. Sugimoto, D. Chao, Q. Shen, Phys. Chem. Chem. Phys. 19, 12502–12508 (2017)

    Article  CAS  Google Scholar 

  38. H.T. Yu, X. Quan, Y.B. Zhang, J. Am. Chem. Soc. 24, 7599–7604 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy (No. HBSKFZD2017001), National Science Foundation of China (Grant No. 51702092), Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB282) and Science Foundation of Hubei University of Technology (Grant No. BSQD2017065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Liu, Z., Ma, C. et al. Network-like CuInS2 photocathode and modified with noble metal co-catalyst for photoelectrochemical water splitting. J Mater Sci: Mater Electron 29, 20629–20638 (2018). https://doi.org/10.1007/s10854-018-0201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0201-z

Navigation