Skip to main content
Log in

Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, metal oxide nanoparticles and their composites with graphene have received significant research attention in toxic gas sensor applications. Herein, we demonstrate a novel approach to develop a sensor by combining SnO2 nanoparticles and Ni-decorated natural cellulosic graphene (Ni-NCG) derived from lotus petals to form SnO2/Ni-NCG nanohybrid. The morphology, microstructure and elemental composition of the nanohybrids were investigated by a number of techniques which confirmed presence of nanometer sized SnO2 particles having large surface area on sheets of few layered Ni-decorated NCG. Upto 15% response was observed when exposed to 40 ppm of NO with high reproducibility at temperature as low as 60 °C which is remarkable when compared to previously reported SnO2 based NO sensors operating at high temperatures (~ 200 °C or more). Further, the nanohybrid showed excellent selectivity to NO when tested against other gases. A mechanism have been proposed for the improved sensitivity at low temperature based on the improved surface area of SnO2 nanoparticles leading to larger adsorption of gas molecules combined with an improved conduction of charges provided by the Ni-decorated NCG network. The results show enormous potential for the SnO2/Ni-NCG nanohybrid film as near room temperature NO sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)

    Article  CAS  Google Scholar 

  2. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1124 (2004)

    Article  CAS  Google Scholar 

  3. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)

    CAS  Google Scholar 

  4. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)

    Article  CAS  Google Scholar 

  5. N. Barsan, U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15, R813–R839 (2003)

    Article  CAS  Google Scholar 

  6. A. Gurlo, Nanosensors: towards morphological control of gas sensing activity SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)

    Article  CAS  Google Scholar 

  7. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)

    Article  CAS  Google Scholar 

  8. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B Chem. 121, 18–35 (2007)

    Article  CAS  Google Scholar 

  9. A. Lassesson, M. Schulze, J. van Lith, S.A. Brown, Tin oxide nanocluster hydrogen and ammonia sensors. Nanotechnology 19, 015502 (2008)

    Article  CAS  Google Scholar 

  10. X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20, 455503 (2009)

    Article  Google Scholar 

  11. F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Nanoscale. SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater. 22, 4821–4827 (2010)

    Article  CAS  Google Scholar 

  12. G.K. Fan, Y. Wang, M. Hu, Z.Y. Luo, G. Li, Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Meas. Sci. Technol. 22, 045203 (2011)

    Article  Google Scholar 

  13. F. Li, Y. Chen, J. Ma, Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 2, 7175–7178 (2014)

    Article  CAS  Google Scholar 

  14. T. Lv, Y. Chen, J. Ma, L. Chen, Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors. RSC Adv. 4, 22487–22490 (2014)

    Article  CAS  Google Scholar 

  15. S. Liu, Y. Zhang, B. Yu, Z. Wang, H. Zhao, N. Zhou, T. Zhang, Solvent-free infiltration method to prepare mesoporous SnO2 templated by SiO2 nanoparticles for ethanol sensing. Sens. Actuators B Chem. 210, 700–705 (2015)

    Article  CAS  Google Scholar 

  16. A. Sarkar, S. Bera, A.K. Chakraborty, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 182, 314–320 (2018)

    Article  CAS  Google Scholar 

  17. V. Meriga, V. Sreeramulu, S. Sundaresan, C. Cahill, V.R. Dhanak, A.K. Chakraborty, Optical, electrical and electrochemical properties of graphene based water soluble polyaniline composites. J. Appl. Polym. Sci. 132, 42766 (2015)

    Article  Google Scholar 

  18. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  CAS  Google Scholar 

  19. R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ. Sci. Technol. 44, 1167–1176 (2010)

    Article  CAS  Google Scholar 

  20. R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 153102 (2015)

    Article  Google Scholar 

  21. P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 29, 15946–15956 (2018)

    Article  CAS  Google Scholar 

  22. S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)

    Article  Google Scholar 

  23. M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)

    Article  CAS  Google Scholar 

  24. M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)

    Article  CAS  Google Scholar 

  25. M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)

    Article  CAS  Google Scholar 

  26. M.L. Yola, N. Atar, T. Eren, H.K. Maleh, S. Wang, Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv. 5, 65953–65962 (2015)

    Article  CAS  Google Scholar 

  27. M.L. Yola, N. Atar, Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc. 163, B718–B725 (2016)

    Article  CAS  Google Scholar 

  28. M.L. Yola, T. Eren, N. Atar, H. Saral, I. Ermiş, Direct-methanol Fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic, nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28, 570–579 (2016)

    Article  CAS  Google Scholar 

  29. O. Akyıldırım, H. Medetalibeyoğlu, S. Manap, M. Beytur, F.S. Tokal, M.L. Yola, N. Atar, Electrochemical sensor based on graphene oxide/iron nanoparticles for the analysis of quercetin. Int. J. Electrochem. Sci. 10, 7743–7753 (2015)

    Google Scholar 

  30. S. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored Calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis, 28, 611–619 (2016)

    Article  Google Scholar 

  31. Ö Aktaş, Y.F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)

    Article  Google Scholar 

  32. V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solak, A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim. Acta 112, 541–548 (2013)

    Article  CAS  Google Scholar 

  33. Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 21, 17360–17365 (2011)

    Article  CAS  Google Scholar 

  34. S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22, 11009–11013 (2012)

    Article  CAS  Google Scholar 

  35. G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B Chem. 179, 61–68 (2013)

    Article  CAS  Google Scholar 

  36. S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovskab, J. Chen, Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013)

    Article  CAS  Google Scholar 

  37. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)

    Article  CAS  Google Scholar 

  38. Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B Chem. 242, 269–279 (2017)

    Article  CAS  Google Scholar 

  39. H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi, J.H. Bang, P. Wu, S.S. Kim, Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interface 9, 31667–31682 (2017)

    Article  CAS  Google Scholar 

  40. C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 244, 466–474 (2017)

    Article  CAS  Google Scholar 

  41. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interface 6, 2174–2184 (2014)

    Article  CAS  Google Scholar 

  42. A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions. Cryst. Eng. Commun. 13, 2487 (2011)

    Article  CAS  Google Scholar 

  43. A.K. Ray, R.K. Sahu, V. Rajinikanth, H. Bapari, M. Ghosh, P. Paul, Preparation and characterization of graphene and Ni-decorated graphene using flowerpetals as the precursor material. Carbon 50, 4123–4129 (2012)

    Article  CAS  Google Scholar 

  44. Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, X. Zhang, All-fiber Raman biosensor by combining reflection and transmission mode. IEEE Photon. Technol. Lett. 30, 387–390 (2018)

    Article  Google Scholar 

  45. S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 202, 272–278 (2014)

    Article  CAS  Google Scholar 

  46. X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)

    Article  CAS  Google Scholar 

  47. R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 5, 5281 (2012)

    Article  CAS  Google Scholar 

  48. C.T. Lee, H.Y. Lee, Y.S. Chiu, Performance Improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3. IEEE Sens. J. 16, 7581–7585 (2016)

    CAS  Google Scholar 

  49. H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration. Sens. Actuators B Chem. 220, 398–405 (2015)

    Article  CAS  Google Scholar 

  50. L. Wang, Y. Chen, J. Ma, L. Chen, Z. Xu, T. Wang, Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500-1–3500-6 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank Prof. A K Raychaudhuri of SN Bose National Centre for Basic Sciences, Kolkata for some of the characterization facilities and fruitful discussions. We also thank Dr. A Singha of Bose Institute, Kolkata for the Raman analysis. AKC acknowledges the facilities of the MHRD (TEQIP-II) funded “Centre of Excellence in Advanced Materials” at NIT Durgapur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta Chatterjee, S., Dey, S., Samanta, D. et al. Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film. J Mater Sci: Mater Electron 29, 20162–20171 (2018). https://doi.org/10.1007/s10854-018-0149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0149-z

Navigation