Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 20010–20016 | Cite as

Ambipolar transport in tin dioxide thin film transistors promoted by PCBM fullerene

  • Miguel H. BorattoEmail author
  • Luis V. A. Scalvi
  • Lyudmila V. Goncharova
  • Giovanni Fanchini


In this article, the effect of phenyl-C61-butyric acid methyl ester (PCBM) layer on the electrical performance of field-effect transistors (FETs) based on antimony-doped tin dioxide (Sb:SnO2) is reported. PCBM is a soluble variety of fullerene, n-type organic semiconductor, known to promote the p-type doping of semiconducting materials such as diamond and graphene, via charge transfer. Sb:SnO2 is an emerging low-cost transparent oxide semiconductor material that exhibits strong unipolar behavior (n-type). Ambipolar character in tin dioxide normally is not observed, however in this study we find that the deposition of PCBM on top of Sb:SnO2 promotes ambipolar behavior in Sb:SnO2 FETs. At negative gate bias (VG < 0) PCBM traps free electrons from the conduction band of SnO2 and from Sb donors, thus downshifting the Sb:SnO2 Fermi level (EF), leading to a strong injection of holes in the valence band of Sb:SnO2. The p-type carrier concentration increases up to 8.6 × 1011 cm−2. Our results suggest that PCBM deposition decreases the current in the accumulation mode of electrons due to electron mobility decrease at VG > 0, and enhances the current in inversion mode. Besides, PCBM deposition also results in an increase of hole mobility at VG < 0.



GF acknowledges a Canada Research Chair (CRC) in Carbon-based nanomaterials and nano-optoelectronics. In Canada, this work was supported through the CRC program, the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program (Grant No. RGPIN-2015-06004), and the Canada Foundation for Innovation (CFI, Grant No. 212442). In Brazil, financial support to this work was obtained from Science without Borders from the National Council of Technological and Scientific Developments (CNPq, Grant 471359/2013-0), and the Coordination for the Improvement of Higher Education Personnel (CAPES) and PNPD/CAPES.

Supplementary material

10854_2018_131_MOESM1_ESM.pdf (50 kb)
Supplementary material 1 (PDF 50 KB)


  1. 1.
    S.M. Sze, Semiconductor Devices: Physics and Technology, 2nd edn. (Wiley, New York, 2006)CrossRefGoogle Scholar
  2. 2.
    S.Z. Bisri, C. Piliego, J. Gao, M.A. Loi, Outlook and emerging semiconducting materials for ambipolar transistors. Adv. Mater. 26, 1176–1199 (2014)CrossRefGoogle Scholar
  3. 3.
    E.J. Meijer, D.M. de Leeuw, S. Setayesh, E. van Veenendaal, B.H. Huisman, P.W.M. Blom, J.C. Hummelen, U. Scherf, J. Kadam, T.M. Klapwijk, Solution-processed ambipolar organic field-effect transistors and inverters. Nat. Mater. 2, 678–682 (2003)CrossRefGoogle Scholar
  4. 4.
    M. Radosavljević, M. Freitag, K.V. Thadani, A.T. Johnson, Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2, 761–764 (2002)CrossRefGoogle Scholar
  5. 5.
    S.-H. Lee, D. Khim, Y. Xu, J. Kim, W.-T. Park, D.-Y. Kim, Y.-Y. Noh, Simultaneous improvement of hole and electron injection in organic field-effect transistors by conjugated polymer-wrapped carbon nanotube interlayers. Sci. Rep. 5, 10407 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Muccini, A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)CrossRefGoogle Scholar
  7. 7.
    K.J. Saji, Y.P. Venkata Subbaiah, K. Tian, A. Tiwari, P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications. Thin Solid Films 605, 193–201 (2016)CrossRefGoogle Scholar
  8. 8.
    R.A. Ramos Jr., M.H. Boratto, L.V.A. Scalvi, On the photo-induced electrical conduction related to gas sensing of the Sb:SnO2/TiO2 heterostructure. Sens. Actuators A Phys. 281, 250–257 (2018)CrossRefGoogle Scholar
  9. 9.
    M.H. Boratto, R.A. Ramos Jr., M. Congiu, C.F.O. Graeff, L.V.A. Scalvi, Memristive behavior of the SnO2/TiO2 interface deposited by sol-gel. Appl. Surf. Sci. 410, 278–281 (2017)CrossRefGoogle Scholar
  10. 10.
    M.H. Boratto, L.V.A. Scalvi, J.L.B. Maciel Jr, M.J. Saeki, E.A. Floriano, Heterojunction between Al2O3 and SnO2 thin films for application in transparent FET. Mater. Res. 17, 1420–1426 (2014)CrossRefGoogle Scholar
  11. 11.
    M.H. Boratto, L.V.A. Scalvi, L.V. Goncharova, G. Fanchini, Effects of solution history on sol-gel processed tin-oxide thin-film transistors. J. Am. Ceram. Soc. 99, 4000–4006 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Karunakaran, S. Sakthi Raadha, P. Gomathisankar, Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles. J. Alloys Compd. 549, 269–275 (2013)CrossRefGoogle Scholar
  13. 13.
    X. Liu, J. Wang, C. Liao, X. Xiao, S. Guo, C. Jiang, Z. Fan, T. Wang, X. Chen, W. Lu, W. Hu, L. Liao, Transparent, high-performance thin-film transistors with an InGaZnO/Aligned-SnO2-nanowire composite and their application in photodetectors. Adv. Mater. 26, 7399–7404 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Batzill, U. Diebold, The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005)CrossRefGoogle Scholar
  15. 15.
    N.F. Quackenbush, J.P. Allen, D.O. Scanlon, S. Sallis, J.A. Hewlett, A.S. Nandur, B. Chen, K.E. Smith, C. Weiland, D.A. Fischer, J.C. Woicik, B.E. White, G.W. Watson, L.F.J. Piper, Origin of the bipolar doping behavior of SnO from X-ray spectroscopy and density functional theory. Chem. Mater. 25, 3114–3123 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Yoo, J. Kum, S. Cho, Tuning the electronic band structure of PCBM by electron irradiation. Nanoscale Res. Lett. 6, 545 (2011)CrossRefGoogle Scholar
  17. 17.
    W. Ke, D. Zhao, C. Xiao, C. Wang, A. Cimaroli, C. Grice, M. Yang, Z. Li, C.-S. Jiang, M. Al-Jassim, K. Zhu, M. Kanatzidis, G. Fang, Y. Yan, Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J. Mater. Chem. A. 4, 14276–14283 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Strobel, M. Riedel, J. Ristein, L. Ley, Surface transfer doping of diamond. Nature 430, 439–441 (2004)CrossRefGoogle Scholar
  19. 19.
    G. Jnawali, Y. Rao, J.H. Beck, N. Petrone, I. Kymissis, J. Hone, T.F. Heinz, Observation of ground- and excited-state charge transfer at the C60/graphene interface. ACS Nano. 9, 7175–7185 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Nawaz, M.S. Meruvia, D.L. Tarange, S.P. Gopinathan, A. Kumar, A. Kumar, H. Bhunia, A.J. Pal, I.A. Hummelgen, High mobility organic field-effect transistors based on defect-free regioregular poly(3-hexylthiophene-2,5-diyl). Org. Electron. Phys. Mater. Appl. 38, 89–96 (2016)Google Scholar
  21. 21.
    A. Li, X. Wei, Y. He, C. He, M.U. Ali, H. Yang, O. Goto, H. Meng, Traps induced memory effect in rubrene single crystal phototransistor. Appl. Phys. Lett. 113, 103301 (2018)CrossRefGoogle Scholar
  22. 22.
    C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999)CrossRefGoogle Scholar
  23. 23.
    A. Opitz, A. Wilke, P. Amsalem, M. Oehzelt, R.-P. Blum, J.P. Rabe, T. Mizokuro, U. Hörmann, R. Hansson, E. Moons, N. Koch, Organic heterojunctions: contact-induced molecular reorientation, interface states, and charge re-distribution. Sci. Rep. 6, 21291 (2016)CrossRefGoogle Scholar
  24. 24.
    G. Horowitz, Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)CrossRefGoogle Scholar
  25. 25.
    S. Ezugwu, J.A. Paquette, V. Yadav, J.B. Gilroy, G. Fanchini, Design criteria for ultrathin single-layer flash memristors from an organic polyradical. Adv. Electron. Mater. 2, 1600253 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Xiao, H. Wang, S. Zhou, K. Yan, Z. Guan, S.-W. Tsang, J. Xu, Enhanced performance of polymeric bulk heterojunction solar cells via molecular doping with TFSA. ACS Appl. Mater. Interfaces 7, 13415–13421 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Post-Graduate Program in PhysicsFederal University of Santa Catarina (UFSC)FlorianópolisBrazil
  2. 2.Department of Physics, School of Sciences, POSMAT - Post-Graduate Program in Materials Science and TechnologySão Paulo State University (UNESP)BauruBrazil
  3. 3.Department of Physics and AstronomyUniversity of Western OntarioLondonCanada
  4. 4.Centre of Advanced Materials and Biomaterials Research (CAMBR)University of Western OntarioLondonCanada
  5. 5.Department of ChemistryUniversity of Western OntarioLondonCanada

Personalised recommendations