Substrate temperature and laser fluence effects on properties of ZnO thin films deposited by pulsed laser deposition

Abstract

The influence of substrate temperature and laser fluence on the optical, structure, surface topography/chemical composition of ZnO thin film have been studied by means of UV–Vis optical absorption, X-ray diffraction XRD, atomic force microscope AFM and X-ray photoelectrons spectroscopy XPS. The UV–Vis absorption spectra showed an absorption band around 350 nm due to ZnO nanostructure, and red shift in wavelength was observed at higher substrate temperature. XRD pattern revealed the poly-crystalline wurtzite structure of ZnO thin film deposited at 25 °C, that evolves into crystal phase (002) and (103) as substrate temperature increased irrespective of laser fluence, the average particle size is in range of 5–10 nm. The AFM 3D images showed that, the ZnO surface morphology becomes more smoother as the substrate temperature increases from 25 to 450 °C, irrespective of laser fluences. The XPS results reveal that Zn component increases with the substrate temperature, meanwhile the O component decreases leads improved improved stoichiometric properties of ZnO thin film.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    U. Ozgur, Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  2. 2.

    J. Wu, D. Xue, Progress of science and technology of ZnO as advanced material. Sci. Adv. Mat. 3, 127 (2011)

    CAS  Article  Google Scholar 

  3. 3.

    H. Schade, Z.E. Smith, Optical properties and quantum efficiency of \(a-\rm Si_{1-x} C_{x}:H/a-Si:H\) solar cells. J. Appl. Phys. 57, 568 (1985)

    CAS  Article  Google Scholar 

  4. 4.

    I. Kondo, T. Yoneyama, K. Kondo, O. Takenaka, A. Kinbara, Interface structure and adhesion of sputtered Ti layers on Si: the effect of heat treatment. Thin Solid Films 1, 236 (1993)

    Article  Google Scholar 

  5. 5.

    J. Ungula, B.F. Dejene, H.C. Swart, Effect of annealing on the structural, morphological and optical properties of Ga-doped ZnO nanoparticles by refluux precipitation method. Results Phys. 7, 2022 (2017)

    Article  Google Scholar 

  6. 6.

    M. Ohmukai, T. Nakagawa, A. Matsumoto, ZnO films deposited on glass by means of DC sputtering. J. Mater. Sci. Chem. Eng. 4, 1 (2016)

    CAS  Google Scholar 

  7. 7.

    P.F. Yang, H.C. Wen, S.R. Jian, S. Lai, S. Wu, R.S. Chen, Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering. Microelectron. Reliab. 48, 389 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    R. Amari, A. Mahroug, A. Boukhari, B. Deghfel, N. Selmi, Structural, optical and luminescence properties of ZnO thin films prepared by sol–gel spin-coating method: effect of precursor concentration. Chin. Phys. Lett. 35(1), 016801 (2018)

    Article  Google Scholar 

  9. 9.

    J. Pokharel, M. Shrestha, L. Qin Zhou, V. Neto, Q.H. Fan, Oriented Zinc oxide nanocrystalline thin films grown from sol–gel solution. J. Coat. Sci. Technol. 2(2), 46 (2015)

    Google Scholar 

  10. 10.

    J.D. Pedersen, H.J. Esposito, K.S. Teh, Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD. Nanoscale Res. Lett. 6, 568 (2011)

    Article  Google Scholar 

  11. 11.

    J.B. Franklin, B. Zou, P. Petrov, D.W. McComb, M.P. Ryana, M.A. McLachlan, Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. J. Mater. Chem. 21, 8178 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    M. Opel, S. Geprägs, M. Althammer, T. Brenninger, R. Gross, Laser molecular beam epitaxy of ZnO thin films and heterostructures. J. Phys. D 47, 034002 (2014)

    Article  Google Scholar 

  13. 13.

    J. Bruncko, A. Vincze, M. Netrvalova, Study of ZnO layers growth by pulsed laser deposition from Zn and ZnO targets. Vacuum 84, 162 (2010)

    Article  Google Scholar 

  14. 14.

    F.K. Shan, B.C. Shin, S.W. Jang, Y.S. Yu, Substrate effects of ZnO thin films prepared by PLD technique. J. Eur. Ceram. Soc. 24(6), 1015 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    S. Lemlikchia, S. Abdelli-Messaci, S. Lafane, T. Kerdja, A. Guittoum, M. Saad, Study of structural and optical properties of ZnO films grown by pulsed laser deposition. Appl. Surf. Sci. 256(18), 5650 (2010)

    Article  Google Scholar 

  16. 16.

    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1970)

    Google Scholar 

  17. 17.

    P. Virendra, D. Charlnene, Y. Deepti, A.J. Shaikh, V. Nadanathangam, Spectroscopic characterization of zinc oxide nanorods synthesized by solid state reaction. Spectrochim. Acta A 65, 173 (2006)

    Article  Google Scholar 

  18. 18.

    I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Upper Saddle River, 1971)

    Google Scholar 

  19. 19.

    M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films 515(16), 6562 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    D.Y. Song, A.G. Aberle, J. Xia, Optimisation of ZnO: Al films by change of sputter gas pressure for solar cell application. Appl. Surf. Sci. 195(1–4), 291 (2002)

    CAS  Article  Google Scholar 

  21. 21.

    H. Kim, C.M. Gilmore, J.S. Horwitz, A. Pique, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi, D.B. Chrisey, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76(3), 259 (1999)

    Article  Google Scholar 

  22. 22.

    R. Cebulla, R. Wendt, K. Ellmer, Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 83, 1087 (1998)

    CAS  Article  Google Scholar 

  23. 23.

    S.H. Jeong, J.H. Boo, Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering. Thin Solid Films 447/448, 105 (2004)

    Article  Google Scholar 

  24. 24.

    Y.S. Kim, W.P. Tai, S.J. Shu, Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 491(1–2), 153 (2005)

    CAS  Article  Google Scholar 

  25. 25.

    M. Chen, W. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al doped ZnO films. Appl. Surf. Sci. 158(1–2), 134 (2000)

    CAS  Article  Google Scholar 

  26. 26.

    M. Futsuhara, K. Yoshioka, O. Takai, Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering. Thin Solid Films 322, 274 (1998)

    CAS  Article  Google Scholar 

  27. 27.

    H. Zhou, Z. Li, Synthesis of nanowires, nanorods and nanoparticles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method. Mater. Chem. Phys. 89, 326 (2005)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Obaid M Alqahtani, Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, for his technical assistance in XRD measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Abdel-Fattah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Fattah, E., Elsayed, I.A. & Fahmy, T. Substrate temperature and laser fluence effects on properties of ZnO thin films deposited by pulsed laser deposition. J Mater Sci: Mater Electron 29, 19942–19950 (2018). https://doi.org/10.1007/s10854-018-0124-8

Download citation