Skip to main content
Log in

Study on nonlinear conductivity and breakdown characteristics of zinc oxide–hexagonal boron nitride/EPDM composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ethylene–propylene–diene monomer (EPDM) has been widely used in HVDC cables accessories. The nonlinear conductivity of EPDM-based composites plays an important role on relieving the distortion of electric field. In this study, the zinc oxide (ZnO) particles are selected as fillers for improving the nonlinear conductivity of EPDM. The result shows that nonlinear conductivity characteristics of ZnO/EPDM becomes more and more pronounced with the increase of ZnO doping content, however, the breakdown strength of ZnO/EPDM composites has been seriously deteriorated with the increase of ZnO doping content. The excellent breakdown strength of composites is very important for ensuring the safe operation of cable accessories, so the hexagonal boron nitride (h-BN) with good electrical insulation has been employed for improving the breakdown strength of ZnO/EPDM. The results indicate that both of non-linear conductivity and good breakdown strength have been obtained in ZnO–h composite-BN/EPDM composites. This work provides a novel way for constructing the composites with excellent electrical performances which are used for cable accessories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Chen, X. Wang, K. Wu, Z.R. Peng, Y.H. Cheng, D.M. Tu, IEEE Trans. Dielectr. Electr. Insul. 19, 140 (2012)

    Article  CAS  Google Scholar 

  2. M.L. Fu, L.A. Dissado, G. Chen, J.C. Fothergill, IEEE Trans. Dielectr. Electr. Insul. 15, 851 (2008)

    Article  CAS  Google Scholar 

  3. D. Fabiani, G.C. Montanari, A. Cavallini, G. Mazzanti, IEEE Trans. Dielectr. Electr. Insul. 11, 393 (2004)

    Article  Google Scholar 

  4. G. Mazzanti, G.C. Montanari, L.A. Dissado, IEEE Trans. Dielectr. Electr. Insul. 8, 966 (2001)

    Article  CAS  Google Scholar 

  5. X.S. Wang, T. Demin, Y. Tanaka, T. Muronaka, IEEE Trans. Dielectr. Electr. Insul. 2, 467 (1995)

    Article  CAS  Google Scholar 

  6. Z.R. Yang, Z.L. Li, J. Li, B.X. Du, Proc CSEE 36, 6647 (2016)

    Google Scholar 

  7. Z.B. Wang, T. Lizuka, M. Kozako, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 18, 1973 (2011)

    Article  CAS  Google Scholar 

  8. D. Weida, T. Steinmetz, M. Clemens, IEEE Trans. Dielectr. Electr. Insul. 45, 980 (2009)

    Google Scholar 

  9. T. Christen, L. Donzel, F. Greuter, IEEE Trans. Dielectr. Electr. Insul. 26, 47 (2010)

    Article  Google Scholar 

  10. K.P. Donnelly, B.R. Varlow, IEEE Trans. Dielectr. Electr. Insul. 10, 610 (2003)

    Article  Google Scholar 

  11. C.Y. Liu, X.Q. Zheng, P. Peng, IEEE Trans. Plasma Sci. 43, 3727 (2015)

    Article  CAS  Google Scholar 

  12. Y. Ando, T. Itoh, J. Appl. Phys. 61, 1497 (1987)

    Article  Google Scholar 

  13. B.X. Du, Z.L. Li, IEEE Trans. Dielectr. Electr. Insul. 23, 3108 (2016)

    Article  CAS  Google Scholar 

  14. F.F. Wang, P.H. Zhang, M.G. Gao, Acta Phys. Sin. 63, 1 (2014)

    Google Scholar 

  15. B.Z. Han, W.M. Guo, Z.H. Li, Funct. Mater. 9, 1490 (2008)

    Google Scholar 

  16. R. Strümpler, J. Glatz-Reichenbach, J. Electroceram. 3, 329 (1999)

    Article  Google Scholar 

  17. C.Y. Liu, X.Q. Zheng, C.L. Bie, Trans. CEC 31, 24 (2016)

    Google Scholar 

  18. C. Chauvet, C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 28, 18 (1993)

    Article  CAS  Google Scholar 

  19. B.X. Du, B. Cui, H. Xu, J. Li, M.L. .Fu, S. Hou, High Volt. Eng. 44, 1412 (2018)

    Google Scholar 

  20. Z.H. Yang, P.H. Hu, S.J. Wang, Z.W. Zha, Z.C. Chong, IEEE Trans. Dielectr. Electr. Insul. 24, 1735 (2017)

    Article  CAS  Google Scholar 

  21. J.M. Yang, X. Wang, B.Z. Han, H. Zhao, M.Z. Xu, Proce CSEE. 34, 1454 (2014)

    Google Scholar 

  22. Q.G. Chen, N.Q. Shang, Y.J. Qin, High Volt. Eng. 43, 3521 (2017)

    Google Scholar 

  23. C.C. Reddy, T.S. Ramu, IEEE Trans. Dielectr. Electr. Insul. 13, 1236 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Science Foundation of China (61640019); Engineering Dielectric and Its Applications Key Laboratory of Ministry of Education Frontier Project Pre-research Fund Project (2018EDAQY01, 2018EDAQY02); Engineering Dielectrics and Applications Key Project of Ministry of Education Open Fund Project (KF20171108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Q., Hao, Y., Zhang, T. et al. Study on nonlinear conductivity and breakdown characteristics of zinc oxide–hexagonal boron nitride/EPDM composites. J Mater Sci: Mater Electron 29, 19678–19688 (2018). https://doi.org/10.1007/s10854-018-0093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0093-y

Navigation