Skip to main content
Log in

Enhancement on the high-temperature joint reliability and corrosion resistance of Sn–0.3Ag–0.7Cu low-Ag solder contributed by Al2O3 Nanoparticles (0.12 wt%)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the evolution of interfacial microstructures and mechanical properties of the joints soldered with Sn–0.3Ag–0.7Cu (SAC0307) and SAC0307-0.12Al2O3 nanoparticles (NPs) aged at 150 °C for different hours (72–840 h) were investigated. It was found the joint soldered with SAC0307-0.12Al2O3 displayed a significantly enhanced high-temperature joint reliability, reflected in a higher shear force than that of the original. This enhancement in shear force primarily benefited from the refinement in solder microstructure contributed by Al2O3 NPs. As aging time reached 840 h, a controlled growth of interfaical IMC layer resulted from the pinning effect of Al2O3 NPs contributed to the increase in shear force. Theoretical analysis showed 0.12 wt% Al2O3 NPs effectively lowered the growth constant of total interfacial IMCs (DT) from 3.19 × 10−10 to 1.02 × 10−10 cm2 s−1. Moreover, comparative studies on the corrosion resistances of SAC0307 and SAC0307-0.12Al2O3 were also conducted by electrochemical test and analyzed by electrochemical impedance spectroscopy (EIS). The results revealed SAC0307-0.12 Al2O3 solder displayed a stronger corrosion resistance (Rt; ~ 3.1 kΩ cm2 vs ~ 7.1 kΩ cm2). This is also related with the tailored microstructure, which provides more grain boundaries for the initial nucleation of passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.W. Yen, C.Y. Lin, G.N. Hermana et al., Interfacial reactions in the Au/Sn–xZn/Cu sandwich couples. J. Alloys Compd. 710, 479–490 (2017)

    Article  CAS  Google Scholar 

  2. G. Zeng et al., A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci. Mater. Electron. 21(5), 421–440 (2010)

    Article  CAS  Google Scholar 

  3. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 52(1), 90–99 (2012)

    Article  CAS  Google Scholar 

  4. S. Cheng, C.M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77–95 (2017)

    Article  CAS  Google Scholar 

  5. M.L. Huang et al., Drop failure modes of Sn–3.0Ag–0.5Cu solder joints in wafer level chip scale package. Trans. Nonferr. Met. Soc. China 26(6), 1663–1669 (2016)

    Article  CAS  Google Scholar 

  6. C.M.L. Wu, D.Q. Yu, C.M.T. Law et al., Properties of lead-free solder alloys with rare earth element additions. Mater. Sci. Eng. R 44(1), 1–44 (2004)

    Article  Google Scholar 

  7. J. Wu, S.B. Xue, J.W. Wang et al., Effect of Pr addition on properties and Sn whisker growth of Sn–0.3Ag–0.7Cu low-Ag solder for electronic packaging. J. Mater. Sci. Mater. Electron. 28(14), 10230–10244 (2017)

    Article  CAS  Google Scholar 

  8. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82(1), 1–32 (2014)

    Google Scholar 

  9. G.K. Sujan, A. Haseeb, H. Nishikawa et al., Interfacial reaction, ball shear strength and fracture surface analysis of lead-free solder joints prepared using cobalt nanoparticle doped flux. J. Alloys Compd. 695, 981–990 (2017)

    Article  CAS  Google Scholar 

  10. A.K. Gain, Y.C. Chan, W.K.C. Yung, Effect of additions of ZrO2 nano-particles on the microstructure and shear strength of Sn–Ag–Cu solder on Au/Ni metallized Cu pads. Microelectron. Reliab. 51(12), 2306–2313 (2011)

    Article  CAS  Google Scholar 

  11. A.R. Köhler, Challenges for eco-design of emerging technologies: the case of electronic textiles. Mater. Des. 51, 51–60 (2013)

    Article  Google Scholar 

  12. M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R 27(5–6), 95–141 (2000)

    Article  Google Scholar 

  13. K.N. Tu, A.M. Gusak, M. Li, Physics and materials challenges for lead-free solders. J. Appl. Phys. 93(3), 1335–1353 (2003)

    Article  CAS  Google Scholar 

  14. D. Suh, D.W. Kim, P. Liu et al., Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions. Mater. Sci. Eng. A 460, 595–603 (2007)

    Article  Google Scholar 

  15. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri et al., High-reliability low-Ag-content Sn–Ag–Cu solder joints for electronics applications. J. Electron. Mater. 41(9), 2631–2658 (2012)

    Article  CAS  Google Scholar 

  16. Y. Gu, X. Zhao, Y. Li et al., Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn–Ag–Cu solders on Cu substrates. J. Alloys Compd. 627, 39–47 (2015)

    Article  CAS  Google Scholar 

  17. A.K. Gain, T. Fouzder, Y.C. Chan et al., The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn–Ag–Cu solder on Au/Ni metallized Cu pads. J. Alloys Compd. 506(1), 216–223 (2010)

    Article  CAS  Google Scholar 

  18. J. Wu et al., Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn–0.3Ag–0.7Cu low-Ag solder. J. Mater. Sci. Mater. Electron. 29(9), 7372–7387 (2018)

    Article  CAS  Google Scholar 

  19. W.R. Osório, E.S. Freitas, J.E. Spinelli et al., Electrochemical behavior of a lead-free Sn–Cu solder alloy in NaCl solution. Corros. Sci. 80, 71–81 (2014)

    Article  Google Scholar 

  20. Z. Wang, C. Chen, J. Jiu et al., Electrochemical behavior of Zn–xSn high-temperature solder alloys in 0.5 M NaCl solution. J. Alloys Compd. 716, 231–239 (2017)

    Article  CAS  Google Scholar 

  21. J.C. Liu, S.W. Park, S. Nagao et al., The role of Zn precipitates and Cl anions in pitting corrosion of Sn–Zn solder alloys. Corros. Sci. 92, 263–271 (2015)

    Article  CAS  Google Scholar 

  22. S. Farina, C. Morando, Comparative corrosion behaviour of different Sn-based solder alloys. J. Mater. Sci. Mater. Electron. 26(1), 464–471 (2015)

    Article  CAS  Google Scholar 

  23. D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin-lead and lead free solders in 3.5 wt% NaCl solution. Corros. Sci. 50(4), 995–1004 (2008)

    Article  CAS  Google Scholar 

  24. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    Article  CAS  Google Scholar 

  25. F. Gao, T. Takemoto, H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing. Mater. Sci. Eng. A 420(1–2), 39–46 (2006)

    Article  Google Scholar 

  26. X. Deng, R.S. Sidhu, P. Johnson et al., Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn–3.5Ag solder/Cu joints. Metall. Mater. Trans. A 36(1), 55–64 (2005)

    Article  Google Scholar 

  27. M. Fayeka, M.A. Fazal, A. Haseeb, Effect of aluminum addition on the electrochemical corrosion behavior of Sn–3Ag–0.5Cu solder alloy in 3.5 wt% NaCl solution. J. Mater. Sci. Mater. Electron. 27(11), 12193–12200 (2016)

    Article  CAS  Google Scholar 

  28. G. Barbero, I. Lelidis, Analysis of Warburg’s impedance and its equivalent electric circuits. Phys. Chem. Chem. Phys. 19(36), 24934–24944 (2017)

    Article  CAS  Google Scholar 

  29. W. Hu, J. Xu, X. Lu et al., Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating. Appl. Surf. Sci. 368, 177–190 (2016)

    Article  CAS  Google Scholar 

  30. X. Zhou, Y. Shen, Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf. Coat. Technol. 235, 433–446 (2013)

    Article  CAS  Google Scholar 

  31. A. Sharma, S. Bhattacharya, S. Das et al., Development of lead free pulse electrodeposited tin based composite solder coating reinforced with ex situ cerium oxide nanoparticles. J. Alloys Compd. 574, 609–616 (2013)

    Article  CAS  Google Scholar 

  32. L.Y. Xu, Z.K. Zhang, H.Y. Jing et al., Effect of graphene nanosheets on the corrosion behavior of Sn–Ag–Cu solders. J. Mater. Sci. Mater. Electron. 26(8), 5625–5634 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51675269) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This research was also supported in part by the National Natural Science Foundation of China (No. 61605045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Songbai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, W., Songbai, X., Jingwen, W. et al. Enhancement on the high-temperature joint reliability and corrosion resistance of Sn–0.3Ag–0.7Cu low-Ag solder contributed by Al2O3 Nanoparticles (0.12 wt%). J Mater Sci: Mater Electron 29, 19663–19677 (2018). https://doi.org/10.1007/s10854-018-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0092-z

Navigation