Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19382–19392 | Cite as

Mixed-valent CoxO–Ag/carbon nanofibers as binder-free and conductive-free electrode materials for high supercapacitor

  • Xingwei Sun
  • Chunping LiEmail author
  • Jie Bai


The composite materials, carbon nanofibers-based cobalt oxide and Ag (CoxO–Ag/CNFs) were fabricated through a facile electrospinning method followed by calcination. They were Co2+–Ag/CNFs, Co2+@Co3+–Ag/CNFs. And the Co2+@Co3+–Ag/CNFs sample was obtained through transform Co2+–Co3+ partially by the catalytic oxidation performance of silver, instead of the traditional high-temperature calcination process. Meanwhile, the high conductive of Ag can promote the transportation of electrons and ions between the electrode and electrolyte. The flexible composite materials as free-standing and additive-free film electrodes for supercapacitors. In virtue of the presence of Ag, the composite materials have better conductivity and supercapacitor performance than Co/CNFs-based electrode. Interestingly, the sample of Co2+–Ag/CNFs has a higher capacitors than Co2+@Co3+–Ag/CNFs sample, that indicates the supercapacitor performance has an important relationship with the valence state of cobalt.



This work is financially support by the National Natural Science Foundation of China (Grant No. 21766022), and the Inner Mongolia Natural Science Foundation (Grant No. 2017MS(LH)0204), and the Scientific Research Program of Higher Education Institutions of Inner Mongolia Autonomous Region (Grant No. NJZY16087).


  1. 1.
    M.M. Zhao, Q.X. Zhao, J.Q. Qiu, H.G. Xue. H. Pang, Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 6, 95449–95468 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  3. 3.
    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)CrossRefGoogle Scholar
  4. 4.
    Q.Q. W, Q. Zong, C.L. Zhang, H. Yang, Q.L. Zhang, Network structure of SnO2 hollow sphere/PANI nanocomposites for electrochemical performance. Dalton Trans. 47, 2368–2375 (2018)CrossRefGoogle Scholar
  5. 5.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)CrossRefGoogle Scholar
  6. 6.
    E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, S. An, M.T. Swihart, J.M. .Yun, K.H. Kim, S.S. Yoon, Carbon nanofibers decorated with FeOx nanoparticles as a flexible electrode material for symmetric supercapacitors. Chem. Eng. J. 328, 776–784 (2017)CrossRefGoogle Scholar
  7. 7.
    G.M. Wang, F. Qian, C. Saltikov, Y.Q. Jiao, Y. Li, Microbial reduction of graphene oxide by Shewanella. Nano Res. 4, 563–570 (2011)CrossRefGoogle Scholar
  8. 8.
    X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, J.Y. Gan, Y.X. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 3, 1690–1696 (2012)CrossRefGoogle Scholar
  9. 9.
    G.H. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Solution processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011)CrossRefGoogle Scholar
  10. 10.
    L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai, F.C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, Flexible solid state supercapacitors based on carbon nanoparticles/ MnO2 nanorods hybrid structure. ACS Nano 6, 656–661 (2012)CrossRefGoogle Scholar
  11. 11.
    X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior performance. J. Phys. Chem. C 115, 22662–22668 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Chen, L.J. Sun, F. Luan, Y. Liang, Y. Li, X.X. Liu, Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 195, 3742–3747 (2010)CrossRefGoogle Scholar
  13. 13.
    C.Z. Meng, C.H. Liu, L.Z. Chen, C.H. Hu, S.S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Jiang, L. Yang, C. Yan, P.S. Lee, J. Ma, High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4, 1813–1819 (2011)CrossRefGoogle Scholar
  15. 15.
    J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim. Acta 75, 213–219 (2012)CrossRefGoogle Scholar
  16. 16.
    M.J. Deng, F.L. Hunag, I.W. Sun, W.T. Tsai, J.K. Chang, An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity. Nanotechnology 20, 175602–175606 (2009)CrossRefGoogle Scholar
  17. 17.
    C.Z. Yuan, L. Yang, L.R. Hou, J.Y. Li, Y.X. Sun, X.G. Zhang, L.F. Shen, X.J. Lu, S.L. Xiong, X.W. Lou, Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 22, 2560–2566 (2012)CrossRefGoogle Scholar
  18. 18.
    X.F. Xia, Q.L. Hao, W. Lei, W.J. Wang, D.P. Sun, X. Wang, Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J. Mater. Chem. 22, 16844–16850 (2012)CrossRefGoogle Scholar
  19. 19.
    M.J. Zhi, C.C. Xiang, J.T. Li, M. Li, N.Q. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Yu, C. Lee, N.S. Lee, M.H. Kim, Y. Lee, Highly efficient silver-cobalt composite nanotube electrocatalysts for favorable oxygen reduction reaction. ACS Appl. Mater. Interfaces. 8, 32833–32841 (2016)CrossRefGoogle Scholar
  21. 21.
    H.Y. He, J. Wang, X. Li, X.W. Zhang, W.J. Weng, G.R. Han, Silica nanofibers with controlled mesoporous structure via electrospinning: from random to orientated. Mater. Lett. 94, 100–103 (2013)CrossRefGoogle Scholar
  22. 22.
    H. Wu, L.B. Hu, M.W. Rowell, D.S. Kong, J.J. Cha, J.R. Mcdonough, J. Zhu, Y. Yang, M.D. Mcgehee, Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10, 4242–4248 (2010)CrossRefGoogle Scholar
  23. 23.
    D. Volder, F.L. Michael, S.H. Tawfick, R.H. Baughman, H.A. John, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  24. 24.
    X.S. Hu, J. Bai, J.Z. Wang, C.P. Li, W. Xu, Preparation of 4A-zeolite-based Ag nanoparticle composite catalyst and research of the catalytic properties. RSC Adv. 5, 2968–2973 (2015)CrossRefGoogle Scholar
  25. 25.
    L. Zeng, T.s. Zhao, L. An, A high-performance supportless silver nanowire catalyst for anion exchange membrane fule cells. J. Mater. Chem. A 3, 1410–1416 (2015)CrossRefGoogle Scholar
  26. 26.
    Y.G. Sun, Silver nanowires-unique templates for functional nanostructures. Nanoscale. 2, 1626–1642 (2010)CrossRefGoogle Scholar
  27. 27.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, LeoW.M. Lau, A.R. Gerson, R.S. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)CrossRefGoogle Scholar
  28. 28.
    S.L. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-Like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 22, 861–871 (2012)CrossRefGoogle Scholar
  29. 29.
    V.G. Bayev, J.A. Fedotova, J.V. Kasiuk, S.A. Vorobyova, A.A. Sohor, I.V. Komissarov, N.G. Kovalchuk, S.L. Prischepa, N.I. Kargin, M. Andrulevičius, J. Przewoznik, C. Kapusta, O.A. Ivashkevich, S.I. Tyutyunnikov, N.N. Kolobylina, P.V. Guryeva, CVD graphene sheets electrochemically decorated with ‘‘core-shell” Co/CoO nanoparticles. Appl. Surf. Sci. 440, 1252–1260 (2018)CrossRefGoogle Scholar
  30. 30.
    A. Jagadale, X. Zhou, D. Blaisdell, S. Yang, Carbon nanofbers (CNFs) supported cobalt- nickel sulfde (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci Rep. 8, 1602–1623 (2018)CrossRefGoogle Scholar
  31. 31.
    S.S. Wang, Q.H. Li, M. Chen, W.H. Pu, Y.L. Wu, M.D. Yang, Electrochemical capacitance performance of Fe-doped Co3O4/graphene nanocomposite: investigation on the effect of iron. Electrochim. Acta 215, 473–482 (2016)CrossRefGoogle Scholar
  32. 32.
    A.C. Pradhan, T. Uyar, Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: quantum confinement and visible light Photocatalysis Performance. ACS Appl. Mater. Interfaces 9, 35757–35774 (2017)CrossRefGoogle Scholar
  33. 33.
    L. Gan, M.R. Wang, L.T. Hu, J. Feng, Y.Q. Lai, J. Li, Nanosheets/mesopore structured Co3O4@CMK-3 composite as electrocatalyst for oxygen reduction reaction. ChemCatChem 21, 1321–1329 (2018)CrossRefGoogle Scholar
  34. 34.
    Z.J. Jiang, Z.Q. Jiang, Interaction induced high catalytic activities of CoO nanoparticles grown on nitrogen-doped hollow graphene microspheres for oxygen reduction and evolution reactions. Sci. Rep. 6, 27081–27195 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Howli, S. Das, S. Sarkar, M. Samanta, K. Panigrahi, N.S. Das, K.K. Chattopadhyay, Co3O4 nanowires on flexible carbon fabric as a binder-free electrode for all solid-state symmetric supercapacitor. ACS Omega. 2, 4216–4226 (2017)CrossRefGoogle Scholar
  36. 36.
    C.W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 473, 68–73 (2008)CrossRefGoogle Scholar
  37. 37.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory. Application to the physics of condensed matter. (Springer, Berlin, 2008)Google Scholar
  38. 38.
    S. Li, C. Chen, K. Fu, L. Xue, C. Zhao, S. Zhang, Y. Hu, L. Zhou, X. Zhang, Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries. Solid State Ionics. 254, 17–26 (2014)CrossRefGoogle Scholar
  39. 39.
    R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C 112, 1825–1830 (2008)CrossRefGoogle Scholar
  40. 40.
    S.N. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49, 1710–1719 (2011)CrossRefGoogle Scholar
  41. 41.
    L.P. Guo, J. Bai, J.Z. Wang, H.O. Liang, C.P. Li, W.Y. Sun, Q.R. Meng, Fabricating series of controllable-porosity carbon nanofibers-based palladium nanoparticles catalyst with enhanced performances and reusability. J. Mol. Catal.A: Chem. 400, 95–103 (2015)CrossRefGoogle Scholar
  42. 42.
    B.H. Kim, C.H. Kim, K.S. Yang, A. Rahy, D.J. Yang, Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes. Electrochim. Acta 83, 335–340 (2012)CrossRefGoogle Scholar
  43. 43.
    S.H. Park, W.J. Lee, Hierarchically mesoporous flower-like cobalt oxide/carbon nanofiber composites with shell-core structure as anodes for lithium ion batteries. Carbon 89, 197–207 (2015)CrossRefGoogle Scholar
  44. 44.
    Y.P. Huang, Y.E. Miao, W.W. Tjiu, T.X. Liu, High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. RSC Adv. 5, 18952–18959 (2015)CrossRefGoogle Scholar
  45. 45.
    Q. Xue, H.B. Gan, Y. Huang, M.S. Zhu, Z.X. Pei, H.F. Li, S.Z. Deng, F. Liu, C.Y. Zhi, Boron element nanowires electrode for supercapacitors. Adv. Energy Mater. 8, 1703117–1703125 (2018)CrossRefGoogle Scholar
  46. 46.
    Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials—capacitive,pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018)CrossRefGoogle Scholar
  47. 47.
    X.J. Chen, D. Chen, X.Y. Guo, R.M. Wang, H.Z. Zhang, Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 9, 18774–18781 (2017)CrossRefGoogle Scholar
  48. 48.
    J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y.H. Lee, Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)CrossRefGoogle Scholar
  49. 49.
    H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces. 4, 2801–2810 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHuhhotPeople’s Republic of China

Personalised recommendations