Advertisement

Solvothermal synthesis, characterization and magnetic properties of nearly superparamagnetic Zn-doped Fe3O4 nanoparticles

  • Xia Li
  • Er LiuEmail author
  • Zhi Zhang
  • Zhan Xu
  • Feng XuEmail author
Review
  • 88 Downloads

Abstract

We report a facile solvothermal method for synthesizing nearly superparamagnetic Zn-doped Fe3O4 nanoparticles with controllable doping concentration. All samples demonstrate a typical spinel structure with small size (less than 20 nm). The Zn ion doping effect on the structure, morphology and magnetism of Fe3O4 nanoparticles have been systematically studied by XRD, TEM, FTIR, XPS and FMR. It is found that the saturation magnetization of Fe3O4 first increases then decreases with increasing Zn doping concentration due to the different site occupation of Zn ions. In contrast, dynamic magnetic measurements demonstrate that the Lande g-factor shows a monotonic increasing trend by the increase of Zn doping concentration.

Notes

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (Grant Nos. 51571121 and 51601093), the Natural Science Foundation of Jiangsu Province (Grant No: BK20160831), the China Postdoctoral Science Foundation Funded Project (Grant No: 2016M601811), the Key Research & Development Program of Jiangsu Province (Grant No: BE2017102), and Special fund for the Transformation of Scientific and Technological Achievements in Jiangsu Province (Grant No: BA2017121).

References

  1. 1.
    R.D. Corato, A. Aloisi, S. Rella, J.M. Greneche, G. Pugliese, T. Pellegrino, C. Malitesta, R. Rinaldi, ACS Appl. Mater. Interfaces 10, 20271–20280 (2018).  https://doi.org/10.1021/acsami.7b18411 CrossRefGoogle Scholar
  2. 2.
    A. Mitra, J. Mohapatra, S.S. Meena, C.V. Tomy, M. Aslam, J. Phys. Chem. C 118, 19356–19362 (2014).  https://doi.org/10.1021/jp501652e CrossRefGoogle Scholar
  3. 3.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374–381 (2017).  https://doi.org/10.1016/S1002-0721(17)60922-0 CrossRefGoogle Scholar
  4. 4.
    T.H. Kim, E.Y. Jang, N.J. Lee, D.J. Choi, K.J. Lee, J. Jang, J. Choi, S.H. Moon, J. Cheon, Nano Lett. 9, 2229–2233 (2009).  https://doi.org/10.1021/nl900030n CrossRefGoogle Scholar
  5. 5.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064–2110 (2008).  https://doi.org/10.1021/cr068445e CrossRefGoogle Scholar
  6. 6.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155–6165 (2017).  https://doi.org/10.1007/s11164-017-2982-8 CrossRefGoogle Scholar
  7. 7.
    S. Yan, J. Tang, P. Liu, Q. Gao, G. Hong, L. Zhen, J. Appl. Phys. 109, 07B535 (2011).  https://doi.org/10.1063/1.3563075 CrossRefGoogle Scholar
  8. 8.
    K. Parekh, R.V. Upadhyay, J. Nanofluids 1, 93–96 (2012).  https://doi.org/10.1166/jon.2012.1008 CrossRefGoogle Scholar
  9. 9.
    Y. Tang, Y. Liu, W. Li, Y. Xie, Y. Li, J. Wu, S. Wang, Y. Tian, W. Tian, Z. Teng, G. Lu, RSC Adv. 6, 62550–62555 (2016).  https://doi.org/10.1039/C6RA09344B CrossRefGoogle Scholar
  10. 10.
    J. Liu, Y. Zhang, Z. Nan, Mater. Res. Bull. 60, 270–278 (2014).  https://doi.org/10.1016/j.materresbull.2014.08.050 CrossRefGoogle Scholar
  11. 11.
    M. Wen, Q. Li, Y. Li, J. Electron, Spectrosc. Relat. Phenom. 153, 65–70 (2006).  https://doi.org/10.1016/j.elspec.2006.06.002 CrossRefGoogle Scholar
  12. 12.
    D. Padalia, U.C. Johri, M.G.H. Zaidi, Mater. Chem. Phys. 169, 89–95 (2016).  https://doi.org/10.1016/j.matchemphys.2015.11.034 CrossRefGoogle Scholar
  13. 13.
    J. He, C. Wang, Y. Cheng, M. Liu, W. Wang, W. Wang, F. Lu, K. Gao, Z. Li, H. Liu, J. Phys. D: Appl. Phys. 49, 095301 (2016).  https://doi.org/10.1088/0022-3727/49/9/095301 CrossRefGoogle Scholar
  14. 14.
    D. Sakellari, K. Brintakis, A. Kostopoulou, E. Myrovali, K. Semionidis, A. Lappas, M. Angelakeris, Mater. Sci. Eng. C 58, 187–193 (2016).  https://doi.org/10.1016/j.msec.2015.08.023 CrossRefGoogle Scholar
  15. 15.
    R. Stone, T. Willi, Y. Rosen, O.T. Mefford, F. Alexis, Ther. Deliv. 2, 815–838 (2011).  https://doi.org/10.4155/tde.11.48 CrossRefGoogle Scholar
  16. 16.
    X. Teng, H. Yang, J. Mater. Chem. 14, 774–779 (2004).  https://doi.org/10.1039/B311610G CrossRefGoogle Scholar
  17. 17.
    T. Hyeon, Communication 8, 927–934 (2003).  https://doi.org/10.1039/B207789B Google Scholar
  18. 18.
    J.E. Lee, N. Lee, H. Kim, J. Kim, S.H. Choi, J.H. Kim, T. Kim, I.C. Song, S.P. Park, W.K. Moon, T. Hyeon, J. Am. Chem. Soc. 132, 552–557 (2009).  https://doi.org/10.1021/ja905793q CrossRefGoogle Scholar
  19. 19.
    V.I. Shubayev, T.R. Pisanic II, S. Jin, Adv. Drug Deliv. Rev. 61, 467–477 (2009).  https://doi.org/10.1016/j.addr.2009.03.007 CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, N. Kohler, M. Zhang, Biomaterials 23, 1553–1561 (2002).  https://doi.org/10.1016/S0142-9612(01)00267-8 CrossRefGoogle Scholar
  21. 21.
    X. Liu, J. Liu, S. Zhang, Z. Nan, Q. Shi, J. Phys. Chem. C 120, 1328–1341 (2016).  https://doi.org/10.1021/acs.jpcc.5b10618 CrossRefGoogle Scholar
  22. 22.
    C. Su, J. Hazard. Mater. 322, 48–84 (2017).  https://doi.org/10.1016/j.jhazmat.2016.06.060 CrossRefGoogle Scholar
  23. 23.
    J. Liu, Y. Bin, M. Matsuo, J. Phys. Chem. C 116, 134–143 (2011).  https://doi.org/10.1021/jp207354s CrossRefGoogle Scholar
  24. 24.
    S. Xuan, F. Wang, Y.X.J. Wang, J.C. Yu, K.C.F. Leung, J. Mater. Chem. 20, 5086–5094 (2010).  https://doi.org/10.1039/C0JM00159G CrossRefGoogle Scholar
  25. 25.
    J. Zhu, Z. Nan, J. Phys. Chem. C 121, 9612–9620 (2017).  https://doi.org/10.1021/acs.jpcc.7b02084 CrossRefGoogle Scholar
  26. 26.
    X.S. Nguyen, G. Zhang, X. Yang, ACS Appl. Mater. Interfaces 9, 8900–8909 (2017).  https://doi.org/10.1021/acsami.6b16839 CrossRefGoogle Scholar
  27. 27.
    O. Acisli, A. Khataee, S. Karaca, A. Karimi, E. Dogan, Ultrason. Sonochem. 34, 754–762 (2017).  https://doi.org/10.1016/j.ultsonch.2016.07.011 CrossRefGoogle Scholar
  28. 28.
    E. Petrova, D. Kotsikau, V. Pankov, J. Magn. Magn. Mater. 378, 429–435 (2015).  https://doi.org/10.1016/j.jmmm.2014.11.076 CrossRefGoogle Scholar
  29. 29.
    W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, J. Am. Chem. Soc. 134, 14658–14661 (2012).  https://doi.org/10.1021/ja305681n CrossRefGoogle Scholar
  30. 30.
    P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang, X.S. Zhao, Langmuir 29, 8997–9003 (2013).  https://doi.org/10.1021/la401627x CrossRefGoogle Scholar
  31. 31.
    D.A. Shirley, Phys. Rev. B 5, 4709 (1972).  https://doi.org/10.1103/PhysRevB.5.4709 CrossRefGoogle Scholar
  32. 32.
    C. Rath, S. Anand, R.P. Das, J. Appl. Phys. 91, 2211–2215 (2002).  https://doi.org/10.1063/1.1432474 CrossRefGoogle Scholar
  33. 33.
    N. Najmoddin, A. Beitollahi, E. Devlin, H. Kavas, S.M. Mohseni, J. Åkerman, D. Niarchos, H. Rezaie, M. Muhammed, M.S. Toprak, Microporous Mesoporous Mater. 190, 346–355 (2014).  https://doi.org/10.1016/j.micromeso.2014.02.033 CrossRefGoogle Scholar
  34. 34.
    S. Mortazavi-Derazkola, M. Salavati-Niasari, H. Khojasteh, O. Amiri, S.M. Ghoreishi, J. Clean. Prod. 168, 39–50 (2017).  https://doi.org/10.1016/j.jclepro.2017.08.235 CrossRefGoogle Scholar
  35. 35.
    S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasia, J. Energy Chem. 26, 17–23 (2017).  https://doi.org/10.1016/j.jechem.2016.10.015 CrossRefGoogle Scholar
  36. 36.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016).  https://doi.org/10.1007/s10854-016-5305-8 Google Scholar
  37. 37.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015).  https://doi.org/10.1007/s10854-015-3648-1 Google Scholar
  38. 38.
    J. Liu, Y.Z. Bin, M. Matsuo, J. Phys. Chem. C 116, 134–143 (2012).  https://doi.org/10.1021/jp207354s CrossRefGoogle Scholar
  39. 39.
    M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A.F. Shojaie, M.D. Rafiee, J. Mater. Sci.: Mater. Electron. 27, 11940–11945 (2016).  https://doi.org/10.1007/s10854-016-5340-5 Google Scholar
  40. 40.
    M. Rostami, M. Rahimi-Nasrabadi, M.R. Ganjali, F. Ahmadi, A.F. Shojaei, M.D. Rafiee, J. Mater. Sci. 52, 7008–7016 (2017).  https://doi.org/10.1007/s10853-017-0934-8 CrossRefGoogle Scholar
  41. 41.
    Y. Koseoglu, A. Baykal, M.S. Toprak, F. Gozuak, A.C. Basaran, B. Aktas, J. Alloy. Compd. 462, 209–213 (2008).  https://doi.org/10.1016/j.jallcom.2007.07.121 CrossRefGoogle Scholar
  42. 42.
    M.L. Néel, Ann. Phys. 12, 137–198 (1948).  https://doi.org/10.1051/anphys/194812030137 CrossRefGoogle Scholar
  43. 43.
    D. Venkateshvaran, M. Althammer, A. Nielsen, S. Geprägs, M.S.R. Rao, S.T.B. Goennenwein, M. Opel, R. Gross, Phys. Rev. B 79, 134405 (2009).  https://doi.org/10.1103/PhysRevB.79.134405 CrossRefGoogle Scholar
  44. 44.
    R.M. Thankachan, J. Cyriac, B. Raneesh, N. Kalarikkal, D. Sanyal, P.M.G. Nambissan, RSC Adv. 5, 64966–64975 (2015).  https://doi.org/10.1039/C5RA04516A CrossRefGoogle Scholar
  45. 45.
    M. Amir, B. Ünal, S.E. Shirsath, M. Geleri, M. Sertkol, A. Baykal, Superlattices Microstruct. 85, 747–760 (2015).  https://doi.org/10.1016/j.spmi.2015.07.001 CrossRefGoogle Scholar
  46. 46.
    M. Wühn, Y. Joseph, P.S. Bagus, A. Niklewski, R. Püttner, S. Reiss, W. Weiss, M. Martins, G. Kaindl, Ch Wöll, J. Phys. Chem. B 104, 7694–7701 (2000).  https://doi.org/10.1021/jp0006734 CrossRefGoogle Scholar
  47. 47.
    A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Surf. Interface Anal. 36, 1564–1574 (2004).  https://doi.org/10.1002/sia.1984 CrossRefGoogle Scholar
  48. 48.
    D. Zhang, Q. Guo, Y. Ren, C. Wang, Q. Shi, Q. Wang, X. Xiao, W. Wang, Q. Fan, J. Sol-Gel. Sci. Technol. 85, 121–131 (2018).  https://doi.org/10.1007/s1097 CrossRefGoogle Scholar
  49. 49.
    Y. Köseoğlu, F. Yildiz, J.V. Yakhmi, J. Qin, X. Chen, B. Aktaş, J. Magn. Magn. Mater. 258, 416–418 (2003).  https://doi.org/10.1016/S0304-8853(02)01077-6 CrossRefGoogle Scholar
  50. 50.
    Y. Köseoğlu, H. Kavas, B. Aktaş, Phys. Status Solidi A 203, 1595–1601 (2006) .  https://doi.org/10.1002/pssa.200563104 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations