Skip to main content
Log in

Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite-oxide materials have grabbed enormous attention from various research groups all over the world due to their large application areas. The band-gap engineering of those materials are important for optoelectronic researches especially for ferroelectric (FE) solar cells that have unique features such as having higher open circuit voltages than the band gap and their spontaneous polarization which leads to photovoltaic effect. Nevertheless, the most of the perovskite FE materials have wide band gaps that hamper the absorption of large solar spectrum. In the present study, it has been demonstrated the band gap of YMnO3 (YMO), which is one of the mostly studied FE materials, can be tuned via doping osmium (Os) into manganese (Mn) site. The band gap of YMO, 2.10 eV successfully is lowered to 1.61 eV. Polycrystalline YMnO3 and YMn1−xOsxO3 (YMOO) (x = 0.01, 0.05, 0.10) thin films were synthesized on indium tin oxide (ITO) substrates at 500 °C by magnetron sputtering method. Their structural, chemical and optical band-gap properties were studied and the results showed the Os doped YMO compounds could be a potential candidate for future ferroelectric solar cell studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Kato, Y. Kaneko, H. Tanaka, K. Kaibara, S. Koyama, K. Isogai, T. Yamada, Y. Shimada, Overview and future challenge of ferroelectric random access memory technologies. Jpn. J. Appl. Phys. 46, 2157 (2007)

    Article  CAS  Google Scholar 

  2. K. Rida, A. Benabbas, F. Bouremmad, M.A. Pen, E. Sastre, A.A. Martinez, Effect of strontium and cerium doping on the structural characteristics and catalytic activity for C3H6 combustion of perovskite LaCrO3 prepared by sole gel. Appl. Catal. B 84, 457–467 (2008)

    Article  CAS  Google Scholar 

  3. D. Maurya, C.W. Ahn, S. Zhang, S. Priy, High dielectric composition in the system Sn-modified (1−x)BaTiO3−xBa(Cu1/3Nb2/3)O3, x = 0.025 for multilayer ceramic capacitors. J. Am. Ceram. Soc. 93(5), 1225–1228 (2010)

    CAS  Google Scholar 

  4. Z. Zhang, Y. Chen, M.O. Tade, Y. Hao, S. Liu, Z. Shao, Tin-doped perovskite mixed conducting membrane for efficient air separation. J. Mater. Chem. A 2, 9666–9674 (2014)

    Article  CAS  Google Scholar 

  5. K. Hilpert, R.W. Steinbrech, F. Boroomand, E. Wessel, F. Meschke, A. Zuev, O. Teller, H. Nickel, L. Singheiser, Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 23, 3009–3020 (2003)

    Article  CAS  Google Scholar 

  6. M.A. Andrianov, V.L. Balkevich, V.E. Sotnikov, Use of lanthanum chromite for making electric heaters. Refractories 21, 592–596 (1980)

    Article  Google Scholar 

  7. S. Halder, S. Sheikh Md, B. Ghosh, T.P. Sinha, Electronic structure and electrical conduction by polaron hopping mechanism in A2LuTaO6 (A = Ba, Sr, Ca) double perovskite oxides. Ceram. Int. 43, 11097–11108 (2017)

    Article  CAS  Google Scholar 

  8. Y. Wang, Y. Sun, J. Zhang, Z. Ci, Z. Zhang, L. Wang, New red Y0.85 Bi0.1Eu0.05V1−yMyO4 (M = Nb, P) phosphors for light-emitting diodes. Physica B 403, 2071–2075 (2008)

    Article  CAS  Google Scholar 

  9. Z. Lu, L. Chen, Y. Tang, Y. Li, Preparation and luminescence properties of Eu 3+-doped MSnO3 (M = Ca, Sr and Ba) perovskite materials. J. Alloys Compd. 387, L1–L4 (2005)

    Article  CAS  Google Scholar 

  10. P.S. Pizani, E.R. Leite, F.M. Pontes, E.C. Paris, J.H. Rangel, E.J.H. Lee, E. Longo, P. Delega, J.A. Varela, Photoluminescence of disordered ABO3 perovskites. Appl. Phys. Lett. 77, 824 (2000)

    Article  CAS  Google Scholar 

  11. T. Arima, Y. Tokura, Variation of optical gaps in perovskite-type Bd transition-metal oxides. Phys. Rev. B 48(23), 17006 (1993)

    Article  CAS  Google Scholar 

  12. S.C. Woo, F.C. Matthew, J.S. David, C. Taekjib, E.J. Gerald Jr., N.L. Ho, Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012). https://doi.org/10.1038/ncomms1690

    Article  CAS  Google Scholar 

  13. G. Ilya, V.D. West, T. Maria, G. Gaoyang, M.S. David, W. Liyan, C. Guannan, M.G. Eric, R.A. Andrew, K.D. Peter, E.S. Jonathan, M.R. Andrew, Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013)

    Article  CAS  Google Scholar 

  14. F.D. Quarto, M.C. Romano, M. Santamaria, S. Piazza, C. Sunseri, A semiempirical correlation between the optical band gap of hydroxides and the electronegativity of their constituents. Russ. J. Electrochem. 36(11), 1203–1208 (2000)

    Article  Google Scholar 

  15. S. Lee, R.D. Levi, W. Qu, S.C. Lee, C.A. Clive, Band-gap nonlinearity in perovskite structured solid solutions. J. Appl. Phys. 107, 023523 (2010)

    Article  CAS  Google Scholar 

  16. X. Xiao, H. Chenguo, G. Donglin, H. Hao, L. Tengjiao, J. Peng, Room temperature magnetic properties of Fe/Co-doped barium niobate crystals. J. Phys. Chem. C 116, 23041–23046 (2012)

    Article  CAS  Google Scholar 

  17. Y. Yupeng, Z. Zongyan, Z. Jing, Y. Ming, Q. Lingguang, L. Zhaosheng, Z. Zhigang, Polymerizable complex synthesis of BaZr1−xSnxO3 photocatalysts: role of Sn4+ in the band structure and their photocatalytic water splitting activities. J. Mater. Chem. 20, 6772–6779 (2010)

    Article  CAS  Google Scholar 

  18. Z. Wenliang, D. Hongmei, Y. Lu, Y. Pingxiong, C. Junhao, Optical band-gap narrowing in perovskite ferroelectric ABO3 ceramics (A = Pb, Ba; B = Ti) by ion substitution technique. Ceram. Int. 41, 13389–13392 (2015)

    Article  CAS  Google Scholar 

  19. F. Ludtke, N. Waasem, K. Buse, B. Sturman, Light-induced charge-transport in undoped LiNbO3 crystals. Appl. Phys. B 105, 35–50 (2011)

    Article  CAS  Google Scholar 

  20. G. Chanussot, V. Fridkin, G. Godefroy, B. Jannot, The photoinduced Rayleigh scattering in BaTiO3 crystals showing the bulk photovoltaic effect. Appl. Phys. Lett. 31, 3–5 (1977)

    Article  CAS  Google Scholar 

  21. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison Jr., H.N. Lee, Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012)

    Article  CAS  Google Scholar 

  22. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013)

    Article  CAS  Google Scholar 

  23. L. Qiao, S. Zhang, H.Y. Xiao, D.J. Singh, K.H.L. Zhang, Z.J. Liu, X.T. Zu, S. Li, Orbital controlled band gap engineering of tetragonal BiFeO3 for optoelectronic applications. J. Mater. Chem. C 5, 1239–1247 (2018)

    Article  Google Scholar 

  24. R. Nechachel, C. Harnagea, L.-P. Carignan, O. Gautreau, L. Pintilie, M.P. Singh, D. Ménard, P. Fournier, M. Alexe, A. Pignolet, Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: growth, characterization, and optimization. J. Appl. Phys. 105, 061621 (2009)

    Article  CAS  Google Scholar 

  25. X.S. Xu, J.F. Ihlefeld, J.H. Lee, O.K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X.Q. Pan, D.G. Schlom, J.L. Musfeldt, Tunable band gap in Bi(Fe1−xMnx)O3 films. Appl. Phys. Lett. 96, 192901 (2010)

    Article  CAS  Google Scholar 

  26. I.G. Ismailzade, S.A. Kizhaev, Determination of the curie point of the ferroelectrics YMnO3 and YbMnO3. Sov. Phys. Solid State 7, 236 (1965)

    Google Scholar 

  27. G. Smolenskii, I. Chupis, Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982)

    Article  Google Scholar 

  28. Z.J. Huang, Y. Cao, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys. Rev. B 56, 2623 (1997)

    Article  CAS  Google Scholar 

  29. M. Fiebig, Th Lottermoser, D. Fröhlich, A.V. Goltsev, R.V. Pisarev, Observation of coupled magnetic and electric domains. Nature 419, 818 (2002)

    Article  CAS  Google Scholar 

  30. S. Lee, A. Pirogov, J.H. Han, J.-G. Park, A. Hoshikawa, T. Kamiyama, Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3. Phys. Rev. B 71, 1804138 (2005)

    Google Scholar 

  31. A.V. Goltsev, R.V. Pisarev, T. Lottermoser, M. Fiebig, Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90(17), 177204 (2003)

    Article  CAS  Google Scholar 

  32. S.H. Kim, S.H. Lee, T.H. Kim, T. Zyung, Y.H. Jeong, M.S. Jang, Growth, ferroelectric properties, and phonon modes of YMnO3 single crystal. Cryst. Res. Technol. 35, 19–27 (2000)

    Article  CAS  Google Scholar 

  33. N. Fujimura, S.I. Azuma, N. Aoki, T. Yoshimura, T. Ito, Growth mechanism of YMnO3 film as a new candidate for nonvolatile memory devices. J. Appl. Phys. 80, 7084 (1996)

    Article  CAS  Google Scholar 

  34. N. Fujimura, T. Ishida, T. Yoshimura, T. Ito, Epitaxially grown YMnO3 film: new candidate for nonvolatile memory devices. Appl. Phys. Lett. 69, 1011 (1996)

    Article  CAS  Google Scholar 

  35. J.K. Choi, W.C. Shin, S.G. Yoon, Ferroelectric YMnO3 thin films grown by metal-organic chemical vapor deposition for metal/ferroelectric/semiconductor field-effect transistors. Thin Solid Films 384, 146 (2001)

    Article  CAS  Google Scholar 

  36. D. Ito, N. Fujimura, T. Yoshimura, T. Ito, Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors. J. Appl. Phys. 93, 5563 (2003)

    Article  CAS  Google Scholar 

  37. P. Murugavel, P. Padhan, W. Prellier, Enhanced magnetoresistance in ferromagnetic Pr0.85Ca0.15MnO3/ferroelectric Ba0.6Sr0.4TiO3 superlattice films. Appl. Phys. Lett. 85, 4992 (2004)

    Article  CAS  Google Scholar 

  38. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig, Magnetic phase control by an electric field. Nature 430, 541 (2004)

    Article  CAS  Google Scholar 

  39. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004)

    Article  CAS  Google Scholar 

  40. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005)

    Article  CAS  Google Scholar 

  41. S.X. Dong, J.Y. Zhai, N.G. Wang, F.M. Bai, J.F. Li, D. Vieland, T.A. Lograsso, Fe–Ga/Pb(Mg1∕3 Nb2∕3)O3–PbTiO3 magnetoelectric laminate composites. Appl. Phys. Lett. 87, 222504 (2005)

    Article  CAS  Google Scholar 

  42. N.G. Wang, J. Cheng, A. Pyatakov, A.K. Zvezdin, J.F. Li, L.E. Cross, D. Vieland, Multiferroic properties of modified BiFeO3–PbTiO3-based ceramics: Random-field induced release of latent magnetization and polarization. Phys. Rev. B 72, 104434 (2005)

    Article  CAS  Google Scholar 

  43. K. Kritayakirana, P. Berger, R.V. Jones, Optical spectra of ferroelectric-antiferromagnetic rare earth manganates. Opt. Commun. 1, 95 (1969)

    Article  CAS  Google Scholar 

  44. J.E. Medvedeva, V.I. Anisimov, M.A. Korotin, O.N. Mryasov, A.J. Freeman, The effect of Coulomb correlation and magnetic ordering on the electronic structure of two hexagonal phases of ferroelectromagnetic YMnO3. J. Phys. 12, 4947 (2000)

    CAS  Google Scholar 

  45. A.M. Kalashnikova, R.V. Pisarev, Electronic structure of hexagonal rare-earth manganites RMnO3. JETP Lett. 78, 143 (2003)

    Article  CAS  Google Scholar 

  46. H. Han, S. Song, J.H. Lee, K.J. Kim, G.-W. Kim, T. Park, H.M. Jang, Switchable photovoltaic effects in hexagonal manganite thin films having narrow band gaps. Chem. Mater. 27(21), 7425–7432 (2015)

    Article  CAS  Google Scholar 

  47. S.F. Wang, H. Yang, T. Xian, X.Q. Liu (2011) Size-controlled synthesis and photocatalytic properties of YMnO3 nanoparticles. Catal. Commun. 12, 625–628

    Article  CAS  Google Scholar 

  48. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Os doped YMnO3 multiferroic: A study investigating the electrical properties through tuning the doping level. J. Alloy Compd. 752, 274–288 (2018)

    Article  CAS  Google Scholar 

  49. O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, A. Turut, Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd and Ir). J. Mater. Sci. 53, 3544–3556 (2018)

    Article  CAS  Google Scholar 

  50. Abo El Ata A.M., S.M. Attia, T.M. Meaz, AC conductivity and dielectric behavior of CoAlxFe2–xO4. Solid State Sci. 6, 61–69 (2004)

    Article  CAS  Google Scholar 

  51. V.D. Nithya, R.J. Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R.K. Selvan, Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method. Mater. Res. Bull. 47, 1861–1868 (2012)

    Article  CAS  Google Scholar 

  52. F. Wan, X. Lin, X. Bai, X. Han, K. Song, J. Zheng, C. Cao, Crystalline structure and dielectric properties of multiferroics Cr-doped YMnO3. J. Mater. Sci. 27, 3082–3087 (2016)

    CAS  Google Scholar 

  53. P.R. Mandal, T.K. Nath, Oxygen-vacancy and charge hopping related dielectric relaxation and conduction process in orthorhombic Gd doped YFe0.6Mn0.4O3 multiferroics. J. Alloys Compd. 628, 379–389 (2015)

    Article  CAS  Google Scholar 

  54. J. Hua, L. Wang, L. Shi, H. Huang, Oxygen reduction reaction activity of LaMn1−xCoxO3-graphene nanocomposite for zinc-air battery. Electrochim. Acta 161, 115–123 (2015)

    Article  CAS  Google Scholar 

  55. F. Hao, J. Du, X.P. Han, F.Y. Cheng, Sol-gel synthesis of perovskite La1−xCaxMnO3 (x = 0–0.4) nanoparticles for electro catalytic oxygen reduction. Chin. J. Inorg. Chem. 29, 1617 (2013)

    Google Scholar 

  56. C. Zhanga, J. Su, X. Wang, F. Huang, J. Zhang, Y. Liu, L. Zhang, K. Min, Z. Wang, X. Lua, F. Yanc, J. Zhu, Study on magnetic and dielectric properties of YMnO3 ceramics. J. Alloys Compd. 509, 7738–7741 (2011)

    Article  CAS  Google Scholar 

  57. F. Wan, X. Lin, X. Bai, X. Han, K. Song, J. Zheng, C. Cao, Crystalline structure and dielectric properties of multiferroic Cr-doped YMnO3. J. Mater. Sci. 27, 3082–3087 (2016)

    CAS  Google Scholar 

  58. P.R. Ren, H.Q. Fan, X. Wang, Bulk conduction and nonlinear behaviour in multiferroic YMnO3. Appl. Phys. Lett. 103, 152905 (2013)

    Article  CAS  Google Scholar 

  59. A.G. Kochura, A.T. Kozakov, K.A. Googlev, A.V. Nikolskii, X-ray photoelectron study of temperature effect on the valence state of Mn in single crystal YMnO3. J. Electron Spectrosc. Relat. Phenom. 195, 1–7 (2014)

    Article  CAS  Google Scholar 

  60. A.G. Kochura, A.T. Kozakov, A.V. Nikolskii, K.A. Googlev, A.V. Pavlenko, I.A. Verbenko, L.A. Reznichenko, T.I. Krasnenko, Valence state of the manganese ions in mixed-valence La1−αBiβMn1 + δO3 ± γ ceramics by Mn 2p and Mn 3 s X-ray photoelectron spectra. J. Electron Spectrosc. Relat. Phenom. 185, 175–183 (2012)

    Article  CAS  Google Scholar 

  61. V.A. Khomchenko, I.O. Troyanchuk, O.S. Mantytskaya, M. Tovar, H. Szymczak, Crystalline and magnetic structures of La1−xBixMnO3+δ manganites. J. Exp. Theor. Phys. 103, 54–59 (2006)

    Article  CAS  Google Scholar 

  62. A. Pal, P. Murugavel, Impact of cationic vacancies on the physical characteristics of multiferroic GdMnO3. J. Appl. Phys. 123, 234102 (2018)

    Article  CAS  Google Scholar 

  63. M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S. Ismat Shah, Effect of reducing atmosphere on the magnetism of Zn1−xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Nanotechnology 17, 2675 (2006)

    Article  CAS  Google Scholar 

  64. R.X. Liu, H. Iddir, Q.B. Fan, G.Y. Hou, A.L. Bo, K.L. Ley, E.S. Smotkin, Y.E. Sung, H. Kim, S. Thomas, A. Wieckowski, Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes. J. Phys. Chem. B 104, 3518 (2000)

    Article  CAS  Google Scholar 

  65. Y.M. Zhu, C.R. Cabrera, Methanol oxidation at the electrochemical Co deposited Pt-Os composite electrode. Electrochem. Solid-State Lett. 4, A45 (2001)

    Article  CAS  Google Scholar 

  66. A. Pitto-Barry, L.M.A. Perdigao, M. Walker, J. Lawrence, G. Costantini, P.J. Sadler, N.P.E. Barry, Synthesis and controlled growth of osmium nanoparticles by electron irradiation. Dalton Trans. 44, 20308–20311 (2015)

    Article  CAS  Google Scholar 

  67. A.F. Lima, M.V. Lalic, Optical absorption spectrum and electronic structure of multiferroic hexagonal YMnO3 compound. Opt. Mater. 64, 406–412 (2017)

    Article  CAS  Google Scholar 

  68. Q. Yang, Z. Zhou, N.X. Sun, M. Liu, Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures. Phys. Lett. A 381, 1213–1222 (2017)

    Article  CAS  Google Scholar 

  69. W.S. Choi, D.G. Kim, S.S.A. Seo, S.J. Moon, D. Lee, J.H. Lee, H.S. Lee, D.Y. Cho, Y.S. Lee, P. Murugavel, J. Yu, T.W. Noh, Electronic structures of hexagonal RMnO(3) (R = Gd, Tb, Dy, and Ho) thin films: optical spectroscopy and first-principles calculations. Phys. Rev. B 77, 045137 (2008)

    Article  CAS  Google Scholar 

  70. D. Gutiérrez, O. Peña, K. Ghanimi, P. Durán, C. Moure, Electrical and magnetic features in the perovskite-type system Y(Co, Mn)O3. J. Phys. Chem. Solids 63, 1975–1982 (2002)

    Article  Google Scholar 

  71. C. Bharti, T.P. Sinha, Structural and ac electrical properties of a newly synthesized single phase rare earth double perovskite oxide: Ba2CeNbO6. Physica B 406, 1827–1832 (2011)

    Article  CAS  Google Scholar 

  72. J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)

    Article  CAS  Google Scholar 

  73. A.J. Hauser, J. Zhang, L. Mier, R.A. Ricciardo, P.M. Woodward, T.L. Gustafson, L.J. Brillson, F.Y. Yang, Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies. Appl. Phys. Lett. 92, 222901 (2008)

    Article  CAS  Google Scholar 

  74. S.J. Clark, J. Robertson, Energy levels of oxygen vacancies in BiFeO3 by screened exchange. Appl. Phys. Lett. 94, 022902 (2009)

    Article  CAS  Google Scholar 

  75. W.-M. Lee, J.H. Sung, K. Chu. X. Moya, D. Lee, C.-J. Kim, N.D. Mathur, S.-W. Cheong, C.-H. Yang, M.-H. Jo, Spatially resolved photodetection in leaky ferroelectric BiFeO3. Adv. Mater. 24, OP49–OP53 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Grant No. 116F025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Polat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, O., Coskun, F.M., Coskun, M. et al. Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level. J Mater Sci: Mater Electron 30, 3443–3451 (2019). https://doi.org/10.1007/s10854-018-00619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00619-9

Navigation