Effect of thermal calcination on the structural, dielectric and magnetic properties of (ZnO–Ni) semiconductor


We report the variations in structural, dielectric and magnetic properties with elevation of calcination temperature of (ZnO, Ni), synthesized by hydrothermal route. Incorporation of Ni in ZnO lattice is accompanied by numerous oxygen vacancies. With increasing calcinations temperature, enhancement in particle size with improvement in crystallization are observed, which is most probably due to grain growth having less number of grain boundaries and enhancement in grain volume. The dielectric behavior gives deep insight of (ZnO, Ni) nanoparticles microstructure. The abrupt increase in A.C. conductivity (σa.c) at high frequencies arises due to the addition of detached charge carrier from trap states to the conduction charge carriers. The (ZnO, Ni) nanoparticles, calcined at different temperatures, show significant changes in the hysteresis loop of ZnO nanoparticles: the loop shows strong ferromagnetic (FM) behavior. The magnetization enhances with increasing the calcination temperature of the particle (Ni, ZnO). Defects (oxygen vacancies) are found to be the main reason for room-temperature ferromagnetism (RTFM) in the (ZnO, Ni) nanoparticles. The enhanced dielectric and magnetic properties of (ZnO, Ni) nanoparticles are strongly correlated with the increase of oxygen vacancies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  Google Scholar 

  2. 2.

    D. Ferrand et al. Phys. Rev. B 63, 085201 (2001)

    Article  Google Scholar 

  3. 3.

    H. Ohno, Science 281, 951 (1998)

    Article  Google Scholar 

  4. 4.

    T. Dietl, H. Ohno, Science 287, 1019 (2000)

    Article  Google Scholar 

  5. 5.

    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science. 294, 1488 (2001)

    Article  Google Scholar 

  6. 6.

    A. Fert, Angewandte, Chem. Int. Edition. 47, 5956–5967 (2008)

    Article  Google Scholar 

  7. 7.

    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science. 287, 1019–1022 (2000)

    Article  Google Scholar 

  8. 8.

    X.Y. Xu, C.B. Cao, J. Magn. Magn, Mater. 14, 2216–2219 (2009)

    Article  Google Scholar 

  9. 9.

    R. Varadhaseshan, S.S. Meenakshi, Appl. Surf. Sci. 258, 7161–7165 (2012)

    Article  Google Scholar 

  10. 10.

    K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K. Chung, Ceram. Int. 40, 16799–16804 (2014)

    Article  Google Scholar 

  11. 11.

    R. Siddheswaran, S. Marie Netrvalová, N. Jarmila, O. Petr, S. Jan, Pavol, Jr. Jaroslav, R., Jayavel, J. Alloy. Compd. 636, 85–92 (2015)

    Article  Google Scholar 

  12. 12.

    B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci. 356, 804–811 (2015)

    Article  Google Scholar 

  13. 13.

    X.J. Liu, X.Y. Zhu, C. Song, F. Zeng, F. Pan, J. Phys. D: Appl. Phys. 42, 035004 (2009)

    Article  Google Scholar 

  14. 14.

    P. Satyarthi, S. Ghosh, B. Pandey, P. Kumar, C.L. Chen, C.L. Dong, W.F. Pong, D. Kanjilal, K. Asokan, P. Srivastava, J. Appl. Phys. 113, 183708 (2013)

    Article  Google Scholar 

  15. 15.

    L.-N. Tong, X.-M. He, H.-B. Han, J.-L. Hu, A.-L. Xia, Y. Tong, Solid State Commun. 150, 1112–1116 (2010)

    Article  Google Scholar 

  16. 16.

    R.K. Singhal, S.C. Sharma, P. Kumari, S. Kumar, Y.T. Xing, U.P. Deshpande, T. Shripathi, E. Saitovitch, J. Appl. Phys. 109, 063907 (2011)

    Article  Google Scholar 

  17. 17.

    J.J. Chen, M.H. Yu, W.L. Zhou, K. Sun, L.M. Wang, Appl. Phys. Lett. 87, 173119 (2005)

    Article  Google Scholar 

  18. 18.

    Y.M. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.H. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Chem. Phys. 123, 134701 (2005)

    Article  Google Scholar 

  19. 19.

    L.W. Yang, W.L. Wu, T. Qin, G.G. Siu, P.K. Chu, J. Appl. Phys. 99, 074303 (2006)

    Article  Google Scholar 

  20. 20.

    R. Khan, C.I. Zulfiqar Levartoski T. de Araujo, M.U. Khan, Z.U. Rahman, A. Rehman, B. Khan, S. Ullah, Fashu, J. Mater. Sci. Mater. Electron. https://doi.org/10.1007/s10854-018-9018-zS

  21. 21.

    M. Zhong, Y. Li, Y. Hu, M. Zhu, W. Li, H. Jin, S. Wang, Y. Li, H. Zhao, J. Alloy. Compd. 647, 823e829 (2015)

    Article  Google Scholar 

  22. 22.

    S.A. Ahmed, Results in Physics. 7, 604–610 (2017)

    Article  Google Scholar 

  23. 23.

    Z.N. Kayani, F. Saleemi, I. Batoo, Appl. Phys. A. 719, 713–720 (2015)

    Article  Google Scholar 

  24. 24.

    A. Tanaka, Z. Makiya, K. Kato, Uematsu, J. Eur. Ceram. Soc. 29, 955–959 (2009)

    Article  Google Scholar 

  25. 25.

    R. Khan, M.U. Zulfiqar, S. Rehman, Z.U. Fashu, Rehman, J. Mater. Sci. Mater. Electron. 28, 10122–10130 (2017)

    Article  Google Scholar 

  26. 26.

    R. Khan, M. Fang, Chin. Phys. B 24, 127803 (2015)

    Article  Google Scholar 

  27. 27.

    R. Khan, S. Zulfiqar, Y. Fashu, Zaman, J. Mater. Sci. Mater. Electron. 27, 5960–5966 (2016)

    Article  Google Scholar 

  28. 28.

    R. Khan, M.U. Zulfiqar, Z.U. Rahman, S. Rehman, Fashu, J. Mater. Sci. Mater. Electron. 27, 10532–10540 (2016)

    Article  Google Scholar 

  29. 29.

    R. Zulfiqar, M.U. Khan, Z. Rahman, Iqbal, J. Mater. Sci. Mater. Electron. 27, 12490–12498 (2016)

    Article  Google Scholar 

  30. 30.

    R. Khan, S. Fashu, Z.U. Rehman, J. Mater. Sci. Mater. Electron. 28, 4333–4339 (2017)

    Article  Google Scholar 

  31. 31.

    R. Khan, S. Zulfiqar, Fashu, J. Mater. Sci. Mater. Electron. 29, 32–37 (2018)

    Article  Google Scholar 

  32. 32.

    A. Simimol, A. Aji, Anappara, C. Harish, Barshilia, Mater. Res. Express. 4, 015001 (2017)

    Article  Google Scholar 

  33. 33.

    M.H. Sukkar, K.H. Johnson, H.L. Tuller, Materi. Sci. Eng. B. 61, 49–59 (1990)

    Article  Google Scholar 

  34. 34.

    A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, Nano-Micro Lett. 7, 219–242 (2015)

    Article  Google Scholar 

  35. 35.

    Mahnaz, Alijani, Nasrollah Najibi Ilkhechi, Silicon https://https://doi.org/10.1007/s12633-018-9792-5

  36. 36.

    B.U. Haq, R. Ahmed, G. Abdellatif, A. Shaari, F.K. Butt, M.S.G. Benali Kanoun. Said Front. Phys. 11, 117101 (2016)

    Article  Google Scholar 

  37. 37.

    A. Angew Origin, development, and future of spintronics (Nobel Lecture), Chem. Int. Ed. 47, 5956–5967 (2008)

  38. 38.

    Y. Lin, D. Jiang, F. Lin, W. Shi, M. Xueming, J. Alloy. Compd. 436, 30–33 (2007)

    Article  Google Scholar 

  39. 39.

    S. Fabbiyola, V. Sailaja, L. John Kennedy, M. Bououdina, J. Judith Vijaya, J. Alloy. Compd. 694, 522–531 (2017)

    Article  Google Scholar 

  40. 40.

    A. Samantaa, M.N. Goswamib, P.K. Mahapatra, J. Alloy. Compd. 730, 399–407 (2018)

    Article  Google Scholar 

  41. 41.

    K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Ceramics International. 40, 16799–16804 (2014)

    Article  Google Scholar 

  42. 42.

    G. Fang, Z. Jun, W.U. Kangbing, Journal of Wuhan University of Technology-Mater. 25, 5 (2010)

    Google Scholar 

  43. 43.

    G. Srinet, R. Kumar, V. Sajal. J. Appl. Phy. 114, 033912 (2013)

    Article  Google Scholar 

  44. 44.

    R. Kevin. Kittilstved, R. Daniel, R. Gamelin, J. Am. Chem. Soc. 127, 5292–5293 (2005)

    Article  Google Scholar 

  45. 45.

    K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Phys. Rev. Lett. 97, 037203–037204 (2006)

    Article  Google Scholar 

  46. 46.

    J.F. Felix, M. Aziz, C.I.L.de Araujo, W.M. de Azevedo, V. Anjos, E.F. da Silva Jr and M. Henini. Semicond Sci Technol. 29, 045021 (2014)

Download references


This work is financially supported by the Higher Education Research Endowment Fund (NO.PMU1-22/HEREF/2014-15/Vol-111/) Khyber Pakhtunkhwa (KPK) Pakistan, Higher Education Commission under START-UP RESEARCH GRANT PROGRAM (Grant No: 21-1525/SRGP/R&D/HEC/2017), (Grant No: 21-1732/SRGP/R&D/HEC/2017), (Grant No: 21-1553/SRGP/R&D/HEC/2017) and Grant No: 21-1287/SRGP/R&D/HEC/2016 the Fundamental Research Funds for the Higher Education Commission (HEC) Pakistan.

Author information



Corresponding author

Correspondence to Rajwali Khan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar, de Araujo, C.I.L. et al. Effect of thermal calcination on the structural, dielectric and magnetic properties of (ZnO–Ni) semiconductor. J Mater Sci: Mater Electron 30, 3396–3404 (2019). https://doi.org/10.1007/s10854-018-00613-1

Download citation