Skip to main content
Log in

Facile hydrothermal assisted synthesis of time dependent Cu2S thin films for efficient photoelectrochemical application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present investigation, we have successfully synthesized nanocrystalline Cu2S thin films at different deposition time via single step hydrothermal route. The synthesized Cu2S thin films characterized for their optostructural, morphological, compositional and photoelecrochemical properties as function of deposition time. Thickness of deposited Cu2S thin films increases with increase in deposition time. The optical studies revealed that band gap of Cu2S thin films decrease with increase in deposition time. Structural study confirm that Cu2S thin films are nanocrystalline in nature with pure hexagonal crystal structure. Crystallite size were increases with increase in deposition time. Raman spectrum shows the presence of sharp band at 472 cm−1 confirms the formation of pure phase hexagonal Cu2S thin film. Scanning electron microscopy micrographs of Cu2S thin films demonstrate that significant change in surface morphology. The high resolution transmission electron microscopy and selected area emission diffraction study indicate that nanocrystalline Cu2S thin films formation. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy show the presence of elements and preferred valence state with stoichiometric composition of the Cu2S thin films. electron impedance spectroscopy reveals that charge transfer resistance (Rct) decreases with increase in deposition time. From J–V measurements, it was found that, Cu2S thin films shows maximum conversion efficiency is 0.27% for film after deposition of 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.P. Alivisatos, Science 271, 933–937 (1996)

    Article  CAS  Google Scholar 

  2. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)

    Article  CAS  Google Scholar 

  3. H.H. Kung, M.C. Kung, Catal. Today 97, 219–224 (2004)

    Article  CAS  Google Scholar 

  4. I. Grozdavon, J. Solid State Chem. 114, 469–475 (1995)

    Article  Google Scholar 

  5. S. Wang, S. Yang, Chem. Mater. 13, 4794–4799 (2001)

    Article  CAS  Google Scholar 

  6. M.C. Brelle, C.L. Torres, J.C. Mcnulty, R.K. Mehra, J.Z. Zhang, Pure Appl. Chem. 72, 101–117 (2013)

    Article  Google Scholar 

  7. W. Liang, M.H. Whangbo, Solid State Commun. 85, 405–408 (1993)

    Article  CAS  Google Scholar 

  8. 8T.Z. Gang, Z.Q. An, G.X. Zhi, Z.J. Fu, W.W. Yong, L.A. Ping, J. Alloys Compd. 695, 1778–1785 (2017)

    Article  Google Scholar 

  9. J.S. Cruz, S.A.M. Hernandez, F.P. Delgado, O.Z. Angel, R.C. Perez, G.T. Delgado, Int. J. Photoenergy 2013,178017 (2013)

  10. J.S. Chung, S.J. Sohn, J. Power Sources 108, 226–231 (2002)

    Article  CAS  Google Scholar 

  11. A.A. Sagade, R. Sharma, Sens. Actuators B 133, 135–143 (2008)

    Article  CAS  Google Scholar 

  12. M.V. Haritha, Y.S. Lee, M. Gopi, H.J. Kim, RSC Adv. 6, 45809–45818 (2016)

    Article  Google Scholar 

  13. M. Xin, K.W. Li, H. Wang, Appl. Surf. Sci. 256, 1436–1442 (2009)

    Article  CAS  Google Scholar 

  14. X.L. Liu, Y.J. Zhu, Mater. Lett. 65, 1089–1091 (2011)

    Article  CAS  Google Scholar 

  15. T.Y. Ding, M.S. Wang, S.P. Guo, G.C. Guo, J.S. Huang, Mater. Lett. 62, 4529–4531 (2008)

    Article  CAS  Google Scholar 

  16. P. Roy, S.K. Srivasta, Mater. Lett. 61, 1693–1697 (2007)

    Article  CAS  Google Scholar 

  17. Z. Yao, X. Zhu, C. Wu, X. Zhang, Y. Xie, Cryst. Growth Des. 7, 1256–1261 (2007)

    Article  CAS  Google Scholar 

  18. Z.H. Yang, D.P. Zhang, W.X. Zhang, M. Chen, J. Phys. Chem. Solids 70, 840–846 (2009)

    Article  CAS  Google Scholar 

  19. X.L. Yu, H.L.W. Chan, Y. Wang, C.B. Cao, Microporous Mesoporous Mater. 118, 423–426 (2009)

    Article  CAS  Google Scholar 

  20. J. Vedel, P. Cowache, M. Soubeyrand, Sol. Energy Mater. 10, 25–34 (1994)

    Article  Google Scholar 

  21. H.S.S. Ranjel, A.C. Castillo, J.F.H. Paz, J.R.F. Mancilla, H.C. Montes, P.E.G. Casillas, C.A.M. Perez, C.A.R. Gonzalez, Chalcogenide Lett. 12, 381–387 (2015)

    Google Scholar 

  22. D. Selle, J. Maege, Phys. Status Solidi. 30, 153–155 (1968)

    Article  Google Scholar 

  23. C. Gautier, G. Breton, M. Nouaoura, M. Cambon, S. Charar, M. Averous, Thin Solid Films 315, 118–122 (1998)

    Article  CAS  Google Scholar 

  24. L. Reijnen, B. Meester, F.d. Lange, J. Schoonman, A. Goossens, Chem. Mater. 17, 2724–2728 (2005)

    Article  CAS  Google Scholar 

  25. F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, J. Sci. Res. Dev. 13, 95–99 (2015)

    Google Scholar 

  26. B. Bharathi, S. Thanikaikarasan, P. Kollu, P.V. Chandrasekar, K. Sankaranarayanan, X.S. Shajan, J. Mater. Sci. Mater. Electron. 25, 5338–5344 (2014)

    Article  CAS  Google Scholar 

  27. J. Podder, R. Kobayashi, M. Ichimura, Thin Solid Films 472, 71–75 (2005)

    Article  CAS  Google Scholar 

  28. A.D. Dhondge, S.R. Gosavi, N.M. Gosavi, C.P. Sawant, A.M. Patil, A.R. Shelke, N.G. Deshpande, World J. Condens. Matter Phys. 5, 1–9 (2015)

    Article  CAS  Google Scholar 

  29. D. Li, J. Ma, L. Zhou, Y. Li, C. Zo, Optik Int. J. Light Electron Opt. 126, 4971–4973 (2015)

    Article  CAS  Google Scholar 

  30. F. Hao, P. Dong, Q. Luo, J. Li, J. Lou, H. Lin, Energy Environ. Sci. 6, 2003 (2013)

    Article  CAS  Google Scholar 

  31. S. Siol, H. Strater, R. Bruggemann, J. Brotz, G. Bauer, A. Klein, W. Jargermann, J. Phys. D 46, 495112 (2013)

    Article  Google Scholar 

  32. S.A. Phaltane, S.A. Vanalakar., T.S. Bhat, P.S. Patil, S.D. Sartale. L.D. Kadam, J. Mater. Sci. Mater. Electron. 28, 8186–8191 (2017)

    Article  CAS  Google Scholar 

  33. S.A. Vanalakar, G.L. Agwane, M.G. Gang, P.S. Patil, J.H. Kim, J.Y. Kim, Phys. Status Solidi C 12, 500–503 (2015)

    Article  CAS  Google Scholar 

  34. S.A. Vanalakar, P.S. Patil, J.H. Kim, Sol. Energy Mater. Sol. Cells 182, 204–219 (2018)

    Article  CAS  Google Scholar 

  35. S.H. Pawar, P.N. Bhosale, Mater. Chem. Phys. 11, 461–479 (1994)

    Article  Google Scholar 

  36. W. Ostwald, L. der, Allg. Chem. 2, 1 (1896)

    Google Scholar 

  37. R.M. Mane, S.R. Mane, R.R. Kharade, P.N. Bhosale, J. Alloys Compd. 491, 321–324 (2010)

    Article  CAS  Google Scholar 

  38. B.D. Ajalkar, R.K. Mane, B.D. Sarwade, P.N. Bhosale, Sol. Energy Mater. Sol. Cells 81, 101–112 (2004)

    Article  CAS  Google Scholar 

  39. K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, New J. Chem. 38, 5964–5974 (2014)

    Article  CAS  Google Scholar 

  40. M.M. Salunkhe, K.V. Khot, P.S. Patil, T.M. Bhave, P.N. Bhosale, New J. Chem. 39, 3405–3416 (2015)

    Article  CAS  Google Scholar 

  41. J. Pelleg, E. Elish, Vac. Surf. Films 20, 754–761 (2002)

    Article  CAS  Google Scholar 

  42. R. Herberholz, M.J. Carter, Sol. Energy Mater. Sol. Cells. 44, 357–366 (1996)

    Article  CAS  Google Scholar 

  43. X. Shuai, W. Shen, Z. Hou, S. Ke, C. Xu, C. Jiang, Nanoscale Res. Lett. 9, 513 (2014)

    Article  Google Scholar 

  44. C.S. Bagade, S.S. Mali, V.B. Ghanwat, K.V. Khot, P.B. Patil, S.D. Kharade, R.M. Mane, N.D. Desai, C.K. Hong, P.S. Patil, P.N. Bhosale, RSC Adv. 5, 55658–55668 (2015)

    Article  CAS  Google Scholar 

  45. X. Meng, M. Sun, Y. Hu, M. Yin, Z.L. Yu, N. Yu, H. Li, T. Shu, J. Alloys Compd. 735, 2142–2147 (2017)

    Article  Google Scholar 

  46. S.K. Jagadale, K.V. Khot, C.S. Bagade, R.M. Mane, V.B. Ghanwat, R.K. Mane, S.S. Mali, C.K. Hong, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 28, 2984–2995 (2017)

    Article  CAS  Google Scholar 

  47. S. Poulston, P.M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24, 811–820 (1996)

    Article  CAS  Google Scholar 

  48. S.A. Vanalakar, S.S. Mali, R.C. Pawar, N.L. Tarwal, A.V. Moholkar, A. Jin, J.H. Kim, P.S. Patil, J.A. Kim, Y. Kwon. Electrochim. Acta 56, 2762–2768 (2011)

    Article  CAS  Google Scholar 

  49. S.A. Vanalkar, P.S. Patil, Chemical synthesis of Cds, Zno and Cds sensitized Zno thin films and their characterization for photo-electrochemical solar cells (Shivaji University, Kolhapur, 2010). http://handle.net/10603/4064

  50. G. Hodes, Nature 285, 29–30 (1980)

    Article  CAS  Google Scholar 

  51. M. Ali, P. Ramirez, S. Mafe, R. Neumann, W. Ensinger, ACS Nano 3, 603–608 (2009)

    Article  CAS  Google Scholar 

  52. S.S. Mali, B.M. Patil, C.A. Betty, P.N. Bhosale, Y.W. Ohd, S.R. Jadkar, R.S. Devanf, Y. Ron Maf, P.S. Patil, Electrochim. Acta 66, 216–221 (2012)

    Article  CAS  Google Scholar 

  53. A.D. Savariraj, K.K. Viswanathan, K. Prabakar, Electrochim. Acta 149, 364–369 (2014)

    Article  CAS  Google Scholar 

  54. V.V. Kondalkar, S.S. Mali, R.R. Kharade, K.V. Khot, P.B. Patil, R.M. Mane, S. Choudhury, P.S. Patil, C.K. Hong, J.H. Kim, P.N. Bhosale, Dalton Trans. 44, 2788–2800 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the author, SSP is very much thankful to Department of Science and Technology (DST), New Delhi for providing DST-INSPIRE fellowship for financial support (Registration No. IF160712). This work is also supported by Basic science and research programme through the National Science Research Foundation of Korea (NRF) funded by Ministry of Education (NRF = 2009–0094055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Popatrao N. Bhosale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.S., Bagade, C.S., Joshi, M.P. et al. Facile hydrothermal assisted synthesis of time dependent Cu2S thin films for efficient photoelectrochemical application. J Mater Sci: Mater Electron 29, 19322–19335 (2018). https://doi.org/10.1007/s10854-018-0059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0059-0

Navigation