Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19264–19277 | Cite as

Effect of processing conditions on the electrical resistance of MWCNT/epoxy nanocomposite based strain sensors

  • Gaurav SapraEmail author
  • Parveen Kumar
  • Navin Kumar
  • Renu Vig
  • Manu Sharma


This paper presents fabrication methods for some Multi Walled Carbon Nano Tube (MWCNT)/epoxy composites. These nanocomposite are characterized with respect to temperature and strain. The effect of parameters such as sonication time, percolation threshold, film thickness, use of substrate and formation of electric contact have been observed. These nanocomposites are fabricated: (i) with mould without substrate, (ii) without mould on poly ethylene terephthalate substrate, (iii) without mould without substrate and (iv) without mould without substrate with embedded electrode wire. Field Emission Scanning Electron Microscope of these samples is done to measure the dispersion and agglomerates formation of CNT bundles into polymer matrices. Piezoresistive characterization of these samples with respect to temperature and strain is performed. This paper gives a novel strategy for fabricating a highly sensitive MWCNT/epoxy strain sensor with excellent repeatability.



The authors acknowledge contributions of Dr. Inderpreet Kaur, Scientist, CSIO, Chandigarh and J.K Goswamy, Professor, UIET, Panjab University, Chandiagrh. Authors are grateful to Sophisticated Analytical Instrumention Facility (SAIF) of Panjab University, Chandigarh for FESEM characterization. Authors also thank Mr. Piyush Uniyal, Research Scholar, IIT Ropar for assisting in characterisation work. We also like to acknowldege Dr. Mamta Sharma, Assistant Professor, UIET, Panjab University for her technical support in characterisation work. We are grateful to Mr. Jaskaran Singh, Bachelor Student, UIET, Panjab University for his support. Authors thank Director, CSIO, Chandigarh for providing necessary laboratory facilities and Department of Science and Technology, New Delhi for providing INSPIRE faculty award to Dr. Parveen Kumar.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    P. Gaudenzi Smart structures: physical behaviour, mathematical modelling and applications. (John Wiley & Sons, Hoboken, 2009)CrossRefGoogle Scholar
  2. 2.
    V.K. Wadhawan, Resonance 10, 27 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Kamila, Am. J. Appl. Sci. 10, 876 (2013)CrossRefGoogle Scholar
  4. 4.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes. (World Scientific, Singapore, 1998)CrossRefGoogle Scholar
  5. 5.
    I. Kang, Y.Y. Heung, J.H. Kim et al., Compos. Part B Eng. 37, 382 (2006)CrossRefGoogle Scholar
  6. 6.
    M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, science 339, 535 (2013)CrossRefGoogle Scholar
  7. 7.
    I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, Smart Mater. Struct. 15, 737 (2006)CrossRefGoogle Scholar
  8. 8.
    L. Cai, C. Wang, Nanoscale Res Lett 10, 320 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Rajoria, N. Jalili, (2005) Compos. Sci. Technol. 65, 2079CrossRefGoogle Scholar
  10. 10.
    P.M. Ajayan, O.Z. Zhou, Carbon nanotubes. (Springer, Berlin, 2001)Google Scholar
  11. 11.
    W. Obitayo, T. Liu, J. Sens. 2012, 15 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li, Sensors 11, 10691 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Hierold, A. Jungen, C. Stampfer, T. Helbling, Sens. Actuat. A Phys. 136, 51 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Park, H. Kim, J.P. Youngblood, Nanotechnology 19, 055705 (2008)CrossRefGoogle Scholar
  15. 15.
    C. Kanoun, A. Müller, Benchirouf et al., Sensors 14, 10042 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Yang, Z. Zhou, Y. Wu et al., Indian J. Pure Appl. Sci. 45, 282 (2007)Google Scholar
  17. 17.
    N. Hu, Y. Karube, M. Arai et al., Carbon 48, 680 (2010)CrossRefGoogle Scholar
  18. 18.
    M.H. Wichmann, S.T. Buschhorn, L. Böger, R. Adelung, K. Schulte, Nanotechnology 19, 475503 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, X. Ye, Nanotechnology 24, 265704 (2013)CrossRefGoogle Scholar
  20. 20.
    B.M. Lee, K.J. Loh, Nanotechnology 28, 155502 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Bouhamed, O. Kanoun, N.T. Dinh, Mechatronic systems: theory and applications (Springer, Berlin, 2014)Google Scholar
  22. 22.
    S. Masahito, Y. Kashiwagi, Y. Li et al., Nanotechnology 22, 085302 (2011)CrossRefGoogle Scholar
  23. 23.
    N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Acta Mater. 56, 2929 (2008)CrossRefGoogle Scholar
  24. 24.
    J.G. Simmons, J. Appl. Phys. 34, 1793 (1963)CrossRefGoogle Scholar
  25. 25.
    M.K. Njuguna, Characterisation of multi wall carbon nanotube–polymer composites for strain sensing applications (Doctoral dissertation, Queensland University of Technology, 2012)Google Scholar
  26. 26.
    J. Hwang, J. Jang, K. Hong et al., Carbon 49, 106 (2011)CrossRefGoogle Scholar
  27. 27.
    K.-P. Yoo, L.-T. Lim, N.-K. Min, M.J. Lee, C.J. Lee, C.-W. Park, Sens. Actuat. B 145, 120 (2010)CrossRefGoogle Scholar
  28. 28.
    Q. Li, Q. Xue, X. Gao, Q. Zheng, Express Polym. Lett. 3, 769 (2009)CrossRefGoogle Scholar
  29. 29.
    F. Michelis, L. Bodelot, Y. Bonnassieux, B. Lebental, Carbon 95, 1020 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Mohiuddin, Effect of pressure and temperature on electrical conductivity of CNT-PEEK composites (Doctoral dissertation, Concordia University, 2012)Google Scholar
  31. 31.
    N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida, J. Qiu, Compos. Part A Appl. Sci. Manuf. 39, 893 (2008)CrossRefGoogle Scholar
  32. 32.
    X. Zeng, X. Xu, P.M. Shenai et al., J. Phys. Chem. C 115, 21685 (2011)CrossRefGoogle Scholar
  33. 33.
    Y.S. Song, J.R. Youn, Carbon 43, 1378 (2005)CrossRefGoogle Scholar
  34. 34.
    B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, Chem. Rev. 105, 1171 (2005)CrossRefGoogle Scholar
  35. 35.
    J.J. Contreras-Navarrete, J.M. Ambriz-Torres, C.J. Gutiérrez-García et al., J. Mater. Sci. Mater. Electron. 29, 15776 (2018)CrossRefGoogle Scholar
  36. 36.
    H. Khosravi, R. Eslami-Farsani, J. Reinf. Plast. Compos. 35, 421 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Wang, G.-L. Zhao, J. Mater. Chem. C 2, 9406 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Su, Y. Gu, S. Feng, J. Mater. Sci.: Mater. Electron. 29, 2416 (2018)Google Scholar
  39. 39.
    A. Kumar, K. Kumar, P. Ghosh, K. Yadav, Ultrasonics sonochem. 41, 37 (2018)CrossRefGoogle Scholar
  40. 40.
    V.A.D. Silva, M.C. Rezende, Mater. Res. (2018). CrossRefGoogle Scholar
  41. 41.
    Z. Wang, Z. Guang-Lin, Open J. Compos. Mater. 3, 17 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Li, W. Li, Y. Ling, W. Gan, M.A. Brady, C. Wang, RSC Adv. 6, 23318 (2016)CrossRefGoogle Scholar
  43. 43.
    B.S. Hadavand, K.M. Javid, M. Gharagozlou, Mater. Des. 50, 62 (2013)CrossRefGoogle Scholar
  44. 44.
    N. Roozban, S. Abbasi, M. Ghazizadeh, J. Mater. Sci. Mater. Electron. 28, 7343 (2017)CrossRefGoogle Scholar
  45. 45.
    S. Jagtap, D. Ratna, Express Polym. Lett. 7, 329–339 (2013)CrossRefGoogle Scholar
  46. 46.
    V. Patil, R.V. Dennis, T.K. Rout, S. Banerjee, G.D. Yadav, RSC Adv. 4, 49264 (2014)CrossRefGoogle Scholar
  47. 47.
    Q. Li, C. Liu, S. Fan, Nano Lett. 9, 3805 (2009)CrossRefGoogle Scholar
  48. 48.
    Y. Li, N. Hu, L. Wu et al., Nanotechnology 24, 455501 (2013)CrossRefGoogle Scholar
  49. 49.
    K.L. Lasater, E.T. Thostenson, Polym. 53, 5367 (2012)CrossRefGoogle Scholar
  50. 50.
    S. Vemuru, R. Wahi, S. Nagarajaiah, P. Ajayan, J. Strain Anal. Eng. Des. 44, 555 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UIETPanjab UniversityChandigarhIndia
  2. 2.Nanotechnology Lab, H-1 DivisionCSIR-Central Scientific Instruments OrganisationChandigarhIndia
  3. 3.IIT RoparRupnagarIndia

Personalised recommendations