Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19147–19154 | Cite as

Effect of Na-substitution on magnetoresistance and flux pinning energy of Bi-2212 ceramics prepared via hot-forging process

  • B. ÖzçelikEmail author
  • M. Gürsul
  • F. Karaçora Nane
  • M. A. Madre
  • A. Sotelo


In this study, polymerization method with polyethyleneimine, followed by hot-forging process was used to synthesize bulk textured Bi2Sr2Ca1−xNaxCu2Oy (x = 0.0, 0.05, 0.075 0.1, and 0.15) ceramics. Magnetoresistance performance of samples was studied by change of flux pinning mechanism. The effect of Na-substitution on the magnetoresistance, flux pinning energy, irreversibility field, upper critical magnetic field and coherence length was evaluated in the framework of thermally activated flux flow model. A resistivity transition broadening under various magnetic fields (0–5 T) was analyzed. By using the resistivity data, the upper critical field and the coherence length at T = 0 K were deduced. For \({\text{H}} \bot c~,\) HC2(0) and ξ(0) values were calculated as 31, 31.3, 36.7, 38.3, 35.1 T and 33.1, 32.4, 30.0, 29.3, 30.6 Å, for 0.0, 0.05, 0.075, 0.10, and 0.15 Na-doped samples, respectively. For \({\text{H}}~||c,\) HC2(0) and ξ(0) values were 95 and 112.3 T and 18.6 and 17.1 Å, for the samples of Na0 and Na2, respectively. In particular, the flux pinning or activation energies of Bi2Sr2Ca1−xNaxCu2O8+y where x = 0.10 were determined to be 0.19 eV for 0 T and 0.06 eV for 5 T.



This work is supported by the Research Fund of Çukurova University, Adana, Turkey, under Grant Contracts No. FBA-2014-3500. M.A. Madre, and A. Sotelo wish to thank the Gobierno de Aragón-FEDER (Research Group T 54-17 R), and the Spanish MINECO-FEDER (MAT2017-82183-C3-1-R) for financial support. Authors would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza.


  1. 1.
    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L 209 (1988)CrossRefGoogle Scholar
  2. 2.
    C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Desland, J. Provost, B. Raveau, Z. Phys. B 68, 421 (1987)CrossRefGoogle Scholar
  3. 3.
    H.G. von Schnering, L. Walz, M. Schwarz, W. Becker, M. Hartweg, T. Popp, B. Hettich, P. Müller, G. Kämpf, Angew. Chem. Int. Ed. Engl. 27, 574–576 (1988)CrossRefGoogle Scholar
  4. 4.
    A. Sotelo, G.F. De la Fuente, F. Lera, D. Beltrán, F. Sapiña, R. Ibáñez, A. Beltrán, M.R. Bermejo, Chem. Mater. 5, 851 (1993)CrossRefGoogle Scholar
  5. 5.
    M.T. Ruiz, G.F. De la Fuente, A. Badía, J. Blasco, M. Castro, A. Sotelo, A. Larrea, F. Lera, C. Rillo, R. Navarro, J. Mater. Res. 8, 1268 (1993)CrossRefGoogle Scholar
  6. 6.
    G.F. de la Fuente, A. Sotelo, Y. Huang, M.T. Ruiz, A. Badia, L.A. Angurel, F. Lera, R. Navarro, C. Rillo, R. Ibañez, D. Beltran, F. Sapiña, A. Beltran, Physica C 185, 509 (1991)CrossRefGoogle Scholar
  7. 7.
    A. Sotelo, Sh Rasekh, M.A. Madre, J.C. Diez, J. Supercond. Nov. Magn. 24, 19 (2011)CrossRefGoogle Scholar
  8. 8.
    B. Ozcelik, M. Gursul, A. Sotelo, M.A. Madre, J. Mater. Sci. Mater. Electron. 26, 441 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Ozcelik, M. Gursul, A. Sotelo, M.A. Madre, J. Mater. Sci. Mater. Electron. 26, 2830 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Sotelo, B. Ozcelik, H. Amaveda, A. Bruned, M.A. Madre, Ceram. Int. 41, 14276 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Özçelik, O. Nane, A. Sotelo, M.A. Madre, Ceram. Int. 42, 3418 (2016)CrossRefGoogle Scholar
  12. 12.
    O. Nane, B. Özçelik, H. Amaveda, A. Sotelo, M.A. Madre, Ceram. Int. 42, 8473 (2016)CrossRefGoogle Scholar
  13. 13.
    O. Nane, B. Özçelik, A. Sotelo, M.A. Madre, J. Eur. Ceram. Soc. 37, 1007 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Özçelik, O. Nane, A. Sotelo, H. Amaveda, M.A. Madre, J. Mater. Sci. Mater. Electron. 28, 6278 (2017)CrossRefGoogle Scholar
  15. 15.
    J.M. Huijbregtse, B. Dam, R.C.F. van der Geest, F.C. Klaassen, R. Elberse, J.H. Rector, R. Griessen, Phys. Rev. B 62, 1338 (2000)CrossRefGoogle Scholar
  16. 16.
    J. Albrecht, Phys. Rev. B 68, 054508 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Hawley, I.D. Raistrick, J.G. Beery, R.J. Houlton, Science 251, 1587 (1991)CrossRefGoogle Scholar
  18. 18.
    C. Gerber, D. Anselmetti, J.G. Bednorz, J. Mannhart, D.G. Schlom, Nature 350, 279 (1991)CrossRefGoogle Scholar
  19. 19.
    J. Trastoy, V. Rouco, C. Ulysse, R. Bernard, G. Faini, J. Lesueur, J. Briatico, J.E. Villegas, Physica C 506, 195 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Shahbazi, X.L. Wang, S.R. Ghorbani, M. Ionescu, O.V. Shcherbakova, F.S. Wells, A.V. Pan, S.X. Dou, K.Y. Choi, Supercond. Sci. Technol. 26, 095014 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Eisterer, M. Zehetmayer, H.W. Weber, J. Jiang, J.D. Weiss, A. Yamamoto, E.E. Hellstrom, Supercond. Sci. Technol. 22, 095011 (2009)CrossRefGoogle Scholar
  22. 22.
    P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)CrossRefGoogle Scholar
  23. 23.
    M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988)CrossRefGoogle Scholar
  24. 24.
    T.T. Palstra, B. Batlogg, R.B. Van Dover, L.F. Scheemeyer, J.V. Waszczak, Appl. Phys. Lett. 54, 763 (1989)CrossRefGoogle Scholar
  25. 25.
    M.R. Mohammadizadeh, M. Akvahan, Physica C 390, 134 (2003)CrossRefGoogle Scholar
  26. 26.
    T.T. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988)CrossRefGoogle Scholar
  27. 27.
    A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, in Strong Correlation and Superconductivity, ed. by H. Fukuyama, S. Maekawa, A.P. Malozemoff, vol. 89 (Springer, Berlin, 1989)CrossRefGoogle Scholar
  28. 28.
    R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)CrossRefGoogle Scholar
  29. 29.
    R.C. Ma, W.H. Song, X.B. Zhu, L. Zhang, S.M. Liu, J. Fang, J.J. Du, Y.P. Sun, C.S. Li, Z.M. Yu, Y. Feng, P.X. Zhang, Physica C 405, 34 (2004)CrossRefGoogle Scholar
  30. 30.
    V. Garnier, R. Caillard, A. Sotelo, G. Desgardin, Physica C 319, 197 (1999)CrossRefGoogle Scholar
  31. 31.
    A. Cruz García, J.R. Fernández Gamboa, E. Altshuler, R.F. Jardim, O. Vazquez Robaina, P. Muné, J. Mater. Sci. Mater. Electron. 29/8, 6188 (2018)CrossRefGoogle Scholar
  32. 32.
    S.-X. Dou, W.-M. Wu, H.-K. Liu, C.C. Sorrell, Physica C 185–189, 811 (1991)CrossRefGoogle Scholar
  33. 33.
    Y. Yu, X. Jin, D.X. Cai, X.X. Yao, C. Hu, K.Y. Ding, D. Feng, Phys. Status Solidi A 146, K33–K36 (1994)CrossRefGoogle Scholar
  34. 34.
    A. Sotelo, J. I.Peña, L.A. Angurel, C. Diez, M.T. Ruiz, G.F. de la Fuente, R. Navarro, J. Mater. Sci. 32, 5679 (1997)CrossRefGoogle Scholar
  35. 35.
    N.N. Eremin, L.I. Leonyuk, V.S. Urusov, J. Solid State Chem. 158, 162 (2001)CrossRefGoogle Scholar
  36. 36.
    M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liv, N.E. Floer, Physica C 176, 95 (1991)CrossRefGoogle Scholar
  37. 37.
    S. Satyavathi, K. Nanda Kishore, V. Hari Babu, O. Pena, Supercond. Sci. Technol. 9, 93 (1996)CrossRefGoogle Scholar
  38. 38.
    M.C. Sekhar, S.V. Suryanarayana, Physica C 415, 209 (2004)CrossRefGoogle Scholar
  39. 39.
    G. Beni, Phys. Rev. B10, 2187 (1974)Google Scholar
  40. 40.
    P.M. Chaikin, G. Beni, Phys. Rev. B 46, 647 (1976)CrossRefGoogle Scholar
  41. 41.
    J.R. Cooper, B. Alavi, L.W. Zhow, W.P. Boyermann, G. Gruner, Phys. Rev. B 35, 8794 (1987)CrossRefGoogle Scholar
  42. 42.
    J.J. Kim, H. Lee, J. Chung, H.J. Shin, H.J. Lee, J.K. Ku, Phys. Rev. B 43, 2962 (1991)CrossRefGoogle Scholar
  43. 43.
    M.M. Barakat, K. Habanjar, J. Adv. Ceram. 6(2), 100 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 25, 961 (2012)CrossRefGoogle Scholar
  45. 45.
    H. Khosroabadi, V. Daadmehr, M. Akhavan, Physica C 384, 169 (2003)CrossRefGoogle Scholar
  46. 46.
    N.H. Mohammed, A.I. Abou-Aly, R. Awad, M. Rekaby, Supercond. Sci. Technol. 19, 1104 (2006)CrossRefGoogle Scholar
  47. 47.
    N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)CrossRefGoogle Scholar
  48. 48.
    H.C. Yang, L.M. Wang, Phys. Rev B 59, 13 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. Özçelik
    • 1
    Email author
  • M. Gürsul
    • 1
  • F. Karaçora Nane
    • 2
  • M. A. Madre
    • 3
  • A. Sotelo
    • 3
  1. 1.Department of Physics, Faculty of Sciences and LettersÇukurova UniversityAdanaTurkey
  2. 2.Department of Electrical and Electronic Engineering, Engineering FacultyHakkari UniversityHakkariTurkey
  3. 3.ICMA (CSIC-Universidad de Zaragoza)ZaragozaSpain

Personalised recommendations