Skip to main content
Log in

Enhanced field emission from copper nanowires synthesized using ion track-etch membranes as scaffolds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper nanowires have been synthesized at different pH values through the template assisted electrodeposition technique using polycarbonate track-etch membranes as scaffolds. The effect of pH (0.8–2.8) of the electrolyte on structure, morphology, composition and deposition rate of copper into the pores of the template, while keeping other electrochemical conditions same, was investigated. X-ray diffraction analysis confirmed the face centered cubic phase of synthesized nanowires. With the change in pH, no shift in peaks was observed except the inclusion of an additional peak of copper oxide in nanowires synthesized at pH 2.8. The nanocrystallite size, strain, lattice stress and energy density were evaluated by X-ray analysis. Field emission scanning electron microscopy images revealed that nanowires obtained at pH 0.8, 1.1 and 1.4 showed incomplete deposition in the pores of the membrane whereas, the nanowires obtained at pH 1.7 were densely stacked, vertically aligned and uniform along the diameter and that obtained from pH 2.0–2.8 had overdeposition on their top. An increase in deposition rate was observed with the increase in pH value. The average diameter of Cu nanowires was found to be ~ 105 nm. The electrical conductivity of as-grown nanowires was observed to decrease 13-fold as the transition from bulk values to the nanosystem. Nanowires prepared at pH of 1.7 were characterized for their field-emission properties. A very large field-enhancement factor of ~ 10,855 was obtained indicating that Cu nanowires grown by reported technique shows outstanding potential as efficient field-emitters for flat panel displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Ross, P.M.R. Media, Annu. Rev. Mater. Res. 31, 203–235 (2001). https://doi.org/10.1146/annurev.matsci.31.1.203

    Article  CAS  Google Scholar 

  2. J.M. Krans, J.M. van Ruitenbeek, V.V. Fisun, I.K. Yanson, L.J. de Jongh, The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995). https://doi.org/10.1038/375767a0

    Article  CAS  Google Scholar 

  3. M.G. Bawendi, M.L. Steigerwald, L.E. Brus, The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990). https://doi.org/10.1146/annurev.pc.41.100190.002401

    Article  CAS  Google Scholar 

  4. B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430–4431 (2003). https://doi.org/10.1021/ja0299452

    Article  CAS  Google Scholar 

  5. N. Sanpo, J. Wang, C.C. Berndt, Sol–gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications. J. Nano Res. 22, 95–106 (2013). https://doi.org/10.4028/www.scientific.net/JNanoR.22.95

    Article  CAS  Google Scholar 

  6. R.V. Kumar, Y. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12, 2301–2305 (2000). https://doi.org/10.1021/cm000166z

    Article  CAS  Google Scholar 

  7. A.A. Noyan, A.P. Leontiev, M.V. Yakovlev, I.V. Roslyakov, G.A. Tsirlina, K.S. Napolskii, Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching. Electrochim. Acta 226, 60–68 (2017). https://doi.org/10.1016/j.electacta.2016.12.142

    Article  CAS  Google Scholar 

  8. P.G. Schiavi, P. Altimari, A. Rubino, F. Pagnanelli, Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization. Electrochim. Acta 259, 711–722 (2018). https://doi.org/10.1016/j.electacta.2017.11.035

    Article  CAS  Google Scholar 

  9. L. Thiebaud, S. Legeai, J. Ghanbaja, N. Stein, Electrodeposition of high aspect ratio single crystalline tellurium nanowires from piperidinium-based ionic liquid. Electrochim. Acta 222, 528–534 (2016). https://doi.org/10.1016/j.electacta.2016.11.005

    Article  CAS  Google Scholar 

  10. C. Zhu, M.J. Panzer, Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. ACS Appl. Mater. Interfaces 7, 5624–5628 (2015). https://doi.org/10.1021/acsami.5b00643

    Article  CAS  Google Scholar 

  11. Y. Yang, Y. Chen, F. Liu, X. Chen, Y. Wu, Template-based fabrication and electrochemical performance of CoSb nanowire arrays. Electrochim. Acta 56, 6420–6425 (2011). https://doi.org/10.1016/j.electacta.2011.05.011

    Article  CAS  Google Scholar 

  12. A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi, F. Faupel, Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012). https://doi.org/10.1016/j.cis.2011.11.001

    Article  CAS  Google Scholar 

  13. W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007). https://doi.org/10.1038/nmat2028

    Article  CAS  Google Scholar 

  14. D. Mijatovic, J.C.T. Eijkel, A. van den Berg, Technologies for nanofluidic systems: top–down vs. bottom–up—a review. Lab Chip 5, 492 (2005). https://doi.org/10.1039/b416951d

    Article  CAS  Google Scholar 

  15. A. Umer, S. Naveed, N. Ramzan, M.S. Rafique, Selection of a suitable method for the synthesis of copper nanoparticles. Nano 7, 1230005 (2012). https://doi.org/10.1142/S1793292012300058

    Article  CAS  Google Scholar 

  16. J. Hu, T.W. Odom, C.M. Lieber, chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999). https://doi.org/10.1021/ar9700365

    Article  CAS  Google Scholar 

  17. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Gösele, L. Samuelson, Nanowire-based one-dimensional electronics. Mater. Today 9, 28–35 (2006). https://doi.org/10.1016/S1369-7021(06)71651-0

    Article  CAS  Google Scholar 

  18. N.I. Kovtyukhova, B.R. Martin, J.K.N. Mbindyo, P.A. Smith, B. Razavi, T.S. Mayer, T.E. Mallouk, Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J. Phys. Chem. B 105, 8762–8769 (2001). https://doi.org/10.1021/jp010867z

    Article  CAS  Google Scholar 

  19. C. Martin-Olmos, H.I. Rasool, B.H. Weiller, J.K. Gimzewski, Graphene MEMS: AFM probe performance improvement. ACS Nano 7, 4164–4170 (2013). https://doi.org/10.1021/nn400557b

    Article  CAS  Google Scholar 

  20. E. Cruz-Silva, F. López-Urías, E. Muñoz-Sandoval, B.G. Sumpter, H. Terrones, J.-C. Charlier, V. Meunier, M. Terrones, Electronic transport and mechanical properties of phosphorus- and phosphorus–nitrogen-doped carbon nanotubes. ACS Nano 3, 1913–1921 (2009). https://doi.org/10.1021/nn900286h

    Article  CAS  Google Scholar 

  21. J.Y. Oh, Y.S. Kim, Y. Jung, S.J. Yang, C.R. Park, Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10, 2184–2192 (2016). https://doi.org/10.1021/acsnano.5b06719

    Article  CAS  Google Scholar 

  22. Z. Li, Q. Guo, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Zhang, D. Zhang, enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 15, 8077–8083 (2015). https://doi.org/10.1021/acs.nanolett.5b03492

    Article  CAS  Google Scholar 

  23. F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015). https://doi.org/10.1021/acs.nanolett.5b02619

    Article  CAS  Google Scholar 

  24. R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, H.G. Xing, Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent raman spectroscopy. ACS Nano 8, 986–993 (2014). https://doi.org/10.1021/nn405826k

    Article  CAS  Google Scholar 

  25. M. Rani, R. Kumar, Rajesh Kumar,  R. Singh, S.K. Chakarvarti, Preparation and characterization of Ag2Se nanowalled tubules by electrochemical method. Chalcogenide Lett. 10, 99–104 (2013)

    CAS  Google Scholar 

  26. C. Tazlaoanu, L. Ion, I. Enculescu, M. Sima, M. Enculescu, E. Matei, R. Neumann, R. Bazavan, D. Bazavan, S. Antohe, Transport properties of electrodeposited ZnO nanowires. Phys. E Low Dimens. Syst. Nanostruct. 40, 2504–2507 (2008). https://doi.org/10.1016/j.physe.2007.07.013

    Article  CAS  Google Scholar 

  27. S. Öztürk, N. Klnç, N. Taşaltn, Z.Z. Öztürk, Fabrication of ZnO nanowires and nanorods. Phys. E Low Dimens. Syst. Nanostruct. 44, 1062–1065 (2012). https://doi.org/10.1016/j.physe.2011.01.015

    Article  CAS  Google Scholar 

  28. P.S. Chinthamanipeta, Q. Lou, D.A. Shipp, Periodic titania nanostructures using block copolymer templates. ACS Nano 5, 450–456 (2011). https://doi.org/10.1021/nn102207y

    Article  CAS  Google Scholar 

  29. P. Enzel, J.J. Zoller, T. Bein, Intrazeolite assembly and pyrolysis of polyacrylonitrile. J. Chem. Soc. Chem. Commun. 8, 633–635 (1992)

    Article  Google Scholar 

  30. C. Guerret-Piecourt, Y. Le Bouar, A. Loiseau, H. Pascard, Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372, 761–765 (1994)

    Article  CAS  Google Scholar 

  31. C.M. Bruinink, M. Péter, P.A. Maury, M. de Boer, L. Kuipers, J. Huskens, D.N. Reinhoudt, Capillary force lithography: fabrication of functional polymer templates as versatile tools for nanolithography. Adv. Funct. Mater. 16, 1555–1565 (2006). https://doi.org/10.1002/adfm.200500629

    Article  CAS  Google Scholar 

  32. A. Sharma, A. Srivastava, Y. Jeon, B. Ahn, Template-assisted fabrication of nanostructured tin (β-Sn) arrays for bulk microelectronic packaging devices. Metals 8, 347 (2018). https://doi.org/10.3390/met8050347

    Article  Google Scholar 

  33. H. Shang, G. Cao, Template-based synthesis of nanorod or nanowire arrays, in Springer Handbook of Nanotechnology (Springer, Berlin, 2010), pp. 169–186

    Chapter  Google Scholar 

  34. J.B. Mohler, H.J. Sedusky, Electroplating for the Metallurgist, Engineer and Chemist (Chemical Publishing, New York, 1951)

    Google Scholar 

  35. F.R.N. Nabarro, P.J. Jackson, Growth of crystal whiskers—a review, in Growth and Perfection of Crystals, ed. by R.H. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York, 1958), pp. 11–102

    Google Scholar 

  36. B.Z. Tang, H. Xu, Preparation, alignment and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 32, 2567–2569 (1999)

    Article  Google Scholar 

  37. G.E. Possin, A method for forming very small diameter wires. Rev. Sci. Instrum. 41, 772–774 (1970)

    Article  CAS  Google Scholar 

  38. W.D. Williams, N. Giordano, Fabrication of 80 Å metal wires. Rev. Sci. Instrum. 55, 410–412 (1984)

    Article  CAS  Google Scholar 

  39. T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316–1319 (1993)

    Article  CAS  Google Scholar 

  40. S. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao, K. Suganuma, Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Phys. Chem. Chem. Phys. 17, 31110–31116 (2015). https://doi.org/10.1039/C5CP04582G

    Article  CAS  Google Scholar 

  41. B.C. Ranu, R. Dey, T. Chatterjee, S. Ahammed, Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem 5 (2012) 22–44. https://doi.org/10.1002/cssc.201100348

    Article  CAS  Google Scholar 

  42. S.E. Allen, R.R. Walvoord, R. Padilla-Salinas, M.C. Kozlowski, Aerobic copper-catalyzed organic reactions. Chem. Rev. 113, 6234–6458 (2013). https://doi.org/10.1021/cr300527g

    Article  CAS  Google Scholar 

  43. Z.-Y. Shih, A.P. Periasamy, P.-C. Hsu, H.-T. Chang, Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Appl. Catal. B Environ. 132–133, 363–369 (2013). https://doi.org/10.1016/j.apcatb.2012.12.004

    Article  CAS  Google Scholar 

  44. R. Kaur, B. Pal, Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis. Appl. Catal. A Gen. 491, 28–36 (2015). https://doi.org/10.1016/j.apcata.2014.10.035

    Article  CAS  Google Scholar 

  45. R.C. Pawar, D.H. Choi, J.S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.051

    Article  CAS  Google Scholar 

  46. S.M. Bergin, Y.H. Chen, A.R. Rathmell, P. Charbonneau, Z.Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996 (2012). https://doi.org/10.1039/c2nr30126a

    Article  CAS  Google Scholar 

  47. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007). https://doi.org/10.1021/nl070648a

    Article  CAS  Google Scholar 

  48. K.A. Dean, A new era: nanotube displays. Nat. Photonics 1, 273–275 (2007). https://doi.org/10.1038/nphoton.2007.64

    Article  CAS  Google Scholar 

  49. A.H. Li, S.H. Cheng, H.D. Li, Q. Yu, J.W. Liu, X.Y. Lv, Effect of nitrogen on deposition and field emission properties of boron-doped micro- and nano-crystalline diamond films. Nano Micro Lett. 2, 154–159 (2010). https://doi.org/10.5101/nml.v2i3.p154-159

    Article  CAS  Google Scholar 

  50. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, D.G. Hasko, Field emission from dense, sparse, and patterned arrays of carbon nanofibers. Appl. Phys. Lett. 80, 2011–2013 (2002). https://doi.org/10.1063/1.1461868

    Article  CAS  Google Scholar 

  51. B.K. Sarker, S.I. Khondaker, Thermionic emission and tunneling at carbon nanotube–organic semiconductor interface. ACS Nano 6, 4993–4999 (2012). https://doi.org/10.1021/nn300544v

    Article  CAS  Google Scholar 

  52. L. Li, X. Fang, H.G. Chew, F. Zheng, T.H. Liew, X. Xu, Y. Zhang, S. Pan, G. Li, L. Zhang, Crystallinity-controlled germanium nanowire arrays: potential field emitters. Adv. Funct. Mater. 18, 1080–1088 (2008). https://doi.org/10.1002/adfm.200701051

    Article  CAS  Google Scholar 

  53. D. Ye, S. Moussa, J.D. Ferguson, A.A. Baski, M.S. El-Shall, Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. Nano Lett. 12, 1265–1268 (2012). https://doi.org/10.1021/nl203742s

    Article  CAS  Google Scholar 

  54. S. Ramanathan, Y. Chen, Y. Tzeng, Zinc oxide nanowire-based field emitters. Phys. E Low Dimens. Syst. Nanostruct. 43, 285–288 (2010). https://doi.org/10.1016/j.physe.2010.07.072

    Article  CAS  Google Scholar 

  55. J. Joo, S.J. Lee, D.H. Park, Y.S. Kim, Y. Lee, C.J. Lee, S.R. Lee, Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatment. Nanotechnology 17, 3506–3511 (2006). https://doi.org/10.1088/0957-4484/17/14/024

    Article  CAS  Google Scholar 

  56. C. Chang, T.K. Huang, H.K. Lin, Y.F. Tzeng, C.W. Peng, F.M. Pan, C.Y. Lee, H.T. Chiu, Growth of pagoda-topped tetragonal copper nanopillar arrays. ACS Appl. Mater. Interfaces 1, 1375–1378 (2009). https://doi.org/10.1021/am900264u

    Article  CAS  Google Scholar 

  57. J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She, Z.L. Wang, Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv. Mater. 15, 1835–1840 (2003). https://doi.org/10.1002/adma.200305528

    Article  CAS  Google Scholar 

  58. S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P.M.F.J. Costa, M. Song, B. Huang, C.T. Liu, P.K. Liaw, Y. Bando, D. Golberg, Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition. Adv. Mater. 21, 2387–2392 (2009). https://doi.org/10.1002/adma.200803401

    Article  CAS  Google Scholar 

  59. W.A. Deheer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, D. Ugarte, Aligned carbon nanotube films: production and optical and electronic properties. Science 268, 845–847 (1995). https://doi.org/10.1126/science.268.5212.845

    Article  CAS  Google Scholar 

  60. E.M. Garcia, J.S. Santos, E.C. Pereira, M.B.J.G. Freitas, Electrodeposition of cobalt from spent Li–ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J. Power Sources 185, 549–553 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.011

    Article  CAS  Google Scholar 

  61. T. Gandhi, K.S. Raja, M. Misra, Synthesis of ZnTe nanowires onto TiO2 nanotubular arrays by pulse-reverse electrodeposition. Thin Solid Films 517, 4527–4533 (2009). https://doi.org/10.1016/j.tsf.2008.12.046

    Article  CAS  Google Scholar 

  62. M. Tagliazucchi, I. Szleifer, Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater. Today 18, 131–142 (2015). https://doi.org/10.1016/j.mattod.2014.10.020

    Article  CAS  Google Scholar 

  63. J. Vazquez-Arenas, L. Altamirano-Garcia, T. Treeratanaphitak, M. Pritzker, R. Luna-Sánchez, R. Cabrera-Sierra, Co–Ni alloy electrodeposition under different conditions of pH, current and composition. Electrochim. Acta 65, 234–243 (2012). https://doi.org/10.1016/j.electacta.2012.01.050

    Article  CAS  Google Scholar 

  64. T. Mahalingam, C. Sanjeeviraja, S. Esther Dali, M. Jayachandran, M.J. chockalingam, Galvanostatic deposition of Cu2O layers through the electrogeneration of base route. J. Mater. Sci. Lett. 17, 603–605 (1998). https://doi.org/10.1023/A:1006594225339

    Article  CAS  Google Scholar 

  65. P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu2O: electrodeposition and characterization. Chem. Mater. 11, 3512–3517 (1999). https://doi.org/10.1021/cm991054e

    Article  Google Scholar 

  66. E.W. Bohannan, M.G. Shumsky, J.A. Switzer, Epitaxial electrodeposition of copper(I) oxide on single-crystal gold (100). Chem. Mater. 11, 2289–2291 (1999). https://doi.org/10.1021/cm990304o

    Article  CAS  Google Scholar 

  67. R.K. Dhillon, P. Singh, S.K. Gupta, S. Singh, R. Kumar, Study of high energy (MeV) N6+ ion and gamma radiation induced modifications in low density polyethylene (LDPE) polymer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 301, 12–16 (2013). https://doi.org/10.1016/j.nimb.2013.02.014

    Article  CAS  Google Scholar 

  68. M.K. Jaiswal, D. Kanjilal, R. Kumar, Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 314, 170–175 (2013). https://doi.org/10.1016/j.nimb.2013.05.053

    Article  CAS  Google Scholar 

  69. R. Kumar, P. Singh, S.K. Gupta, R. Gupta, M.K. Jaiswal, M. Prasad, A. Roychowdhury, R.P. Chauhan, D. Das, Radiation induced nano-scale free volume modifications in amorphous polymeric material: a study using positron annihilation lifetime spectroscopy. J. Radioanal. Nucl. Chem. 314, 1659–1666 (2017). https://doi.org/10.1007/s10967-017-5510-9

    Article  CAS  Google Scholar 

  70. S.K. Gupta, R. Gupta, P. Singh, V. Kumar, M.K. Jaiswal, S.K. Chakarvarti, R. Kumar, Modifications in physico-chemical properties of 100 MeV oxygen ions irradiated polyimide Kapton-H polymer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 406, 188–192 (2017). https://doi.org/10.1016/j.nimb.2017.02.011

    Article  CAS  Google Scholar 

  71. S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Phys. E Low Dimens. Syst. Nanostruct. 91, 72–81 (2017). https://doi.org/10.1016/j.physe.2017.04.010

    Article  CAS  Google Scholar 

  72. S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater. Chem. Phys. 202, 56–64 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.067

    Article  CAS  Google Scholar 

  73. W.H. Chen, H.C. Cheng, C.F. Yu, The mechanical, thermodynamic, and electronic properties of cubic Au4Al crystal via first-principles calculations. J. Alloys Compd. 689, 857–864 (2016). https://doi.org/10.1016/j.jallcom.2016.08.050

    Article  CAS  Google Scholar 

  74. V. Mote, Y. Purushotham, B. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  75. H. Yadav, N. Sinha, S. Goel, B. Kumar, Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. J. Alloys Compd. 689, 333–341 (2016). https://doi.org/10.1016/j.jallcom.2016.07.329

    Article  CAS  Google Scholar 

  76. C. Narula, R.P. Chauhan, High dose gamma ray exposure effect on the properties of CdSe nanowires. Radiat. Phys. Chem. 144, 405–412 (2017). https://doi.org/10.1016/j.radphyschem.2017.10.003

    Article  CAS  Google Scholar 

  77. Rashi Gupta, R.P. Chauhan, S.K. Chakarvarti, Rajesh Kumar, Gamma ray induced modifications in copper microwires synthesized using track-etched membrane. Vacuum 148, 239–247 (2018). https://doi.org/10.1016/j.vacuum.2017.11.031

    Article  CAS  Google Scholar 

  78. A. Khorsand Zak, W.H. Abd. M.E. Majid, R. Abrishami, Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  Google Scholar 

  79. E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952). https://doi.org/10.1080/00018735200101151

    Article  Google Scholar 

  80. K. Barmak, A. Darbal, K.J. Ganesh, P.J. Ferreira, J.M. Rickman, T. Sun, B. Yao, A.P. Warren, K.R. Coffey, Surface and grain boundary scattering in nanometric Cu thin films: a quantitative analysis including twin boundaries. J. Vac. Sci. Technol. A Vac Surf. Film 32, 61503 (2014). https://doi.org/10.1116/1.4894453

    Article  CAS  Google Scholar 

  81. A.F. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970). https://doi.org/10.1103/PhysRevB.1.1382

    Article  Google Scholar 

  82. Y. Kitaoka, T. Tono, S. Yoshimoto, T. Hirahara, S. Hasegawa, T. Ohba, Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements. Appl. Phys. Lett. 95, 52110 (2009). https://doi.org/10.1063/1.3202418

    Article  CAS  Google Scholar 

  83. Q. Huang, C.M. Lilley, M. Bode, R. Divan, Surface and size effects on the electrical properties of Cu nanowires. J. Appl. Phys. 104, 23709 (2008). https://doi.org/10.1063/1.2956703

    Article  CAS  Google Scholar 

  84. Rashi Gupta, R.P. Chauhan, S.K. Chakarvarti, Rajesh Kumar, Effect of SHI on properties of template synthesized Cu nanowires. Ionics 24, 1–12 (2018). https://doi.org/10.1007/s11581-018-2578-3

    Article  CAS  Google Scholar 

  85. J. Homoth, M. Wenderoth, T. Druga, L. Winking, R.G. Ulbrich, C. Bobisch, B. Weyers, A. Bannani, E. Zubkov, a M. Bernhart, M.R. Kaspers, R. Möller, Electronic transport on the nanoscale: ballistic transmission and Ohm’s law. Nano Lett. 9, 1588–1592 (2009). https://doi.org/10.1021/nl803783g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Dr. Rajesh Kumar is grateful to University Grants Commission (UGC), Govt. of India, New Delhi, India, for providing financial assistance as Raman Post-Doctoral Fellow (F.No. 5-150 /2016(IC)) at Rensselaer Polytechnic Institute, New York, USA. We would also like to take the opportunity to thank all the reviewers for their effort and expertise in reviewing this paper that has helped in further improving the quality of the research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Chauhan, R.P., Chakarvarti, S.K. et al. Enhanced field emission from copper nanowires synthesized using ion track-etch membranes as scaffolds. J Mater Sci: Mater Electron 29, 19013–19027 (2018). https://doi.org/10.1007/s10854-018-0027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0027-8

Navigation