Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19013–19027 | Cite as

Enhanced field emission from copper nanowires synthesized using ion track-etch membranes as scaffolds

  • Rashi Gupta
  • R. P. Chauhan
  • S. K. Chakarvarti
  • M. K. Jaiswal
  • D. Ghoshal
  • S. Basu
  • S. Suresh
  • Stephen F. Bartolucci
  • N. Koratkar
  • Rajesh KumarEmail author


Copper nanowires have been synthesized at different pH values through the template assisted electrodeposition technique using polycarbonate track-etch membranes as scaffolds. The effect of pH (0.8–2.8) of the electrolyte on structure, morphology, composition and deposition rate of copper into the pores of the template, while keeping other electrochemical conditions same, was investigated. X-ray diffraction analysis confirmed the face centered cubic phase of synthesized nanowires. With the change in pH, no shift in peaks was observed except the inclusion of an additional peak of copper oxide in nanowires synthesized at pH 2.8. The nanocrystallite size, strain, lattice stress and energy density were evaluated by X-ray analysis. Field emission scanning electron microscopy images revealed that nanowires obtained at pH 0.8, 1.1 and 1.4 showed incomplete deposition in the pores of the membrane whereas, the nanowires obtained at pH 1.7 were densely stacked, vertically aligned and uniform along the diameter and that obtained from pH 2.0–2.8 had overdeposition on their top. An increase in deposition rate was observed with the increase in pH value. The average diameter of Cu nanowires was found to be ~ 105 nm. The electrical conductivity of as-grown nanowires was observed to decrease 13-fold as the transition from bulk values to the nanosystem. Nanowires prepared at pH of 1.7 were characterized for their field-emission properties. A very large field-enhancement factor of ~ 10,855 was obtained indicating that Cu nanowires grown by reported technique shows outstanding potential as efficient field-emitters for flat panel displays.



One of the authors, Dr. Rajesh Kumar is grateful to University Grants Commission (UGC), Govt. of India, New Delhi, India, for providing financial assistance as Raman Post-Doctoral Fellow (F.No. 5-150 /2016(IC)) at Rensselaer Polytechnic Institute, New York, USA. We would also like to take the opportunity to thank all the reviewers for their effort and expertise in reviewing this paper that has helped in further improving the quality of the research paper.


  1. 1.
    C. Ross, P.M.R. Media, Annu. Rev. Mater. Res. 31, 203–235 (2001). CrossRefGoogle Scholar
  2. 2.
    J.M. Krans, J.M. van Ruitenbeek, V.V. Fisun, I.K. Yanson, L.J. de Jongh, The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995). CrossRefGoogle Scholar
  3. 3.
    M.G. Bawendi, M.L. Steigerwald, L.E. Brus, The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990). CrossRefGoogle Scholar
  4. 4.
    B. Liu, H.C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430–4431 (2003). CrossRefGoogle Scholar
  5. 5.
    N. Sanpo, J. Wang, C.C. Berndt, Sol–gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications. J. Nano Res. 22, 95–106 (2013). CrossRefGoogle Scholar
  6. 6.
    R.V. Kumar, Y. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12, 2301–2305 (2000). CrossRefGoogle Scholar
  7. 7.
    A.A. Noyan, A.P. Leontiev, M.V. Yakovlev, I.V. Roslyakov, G.A. Tsirlina, K.S. Napolskii, Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching. Electrochim. Acta 226, 60–68 (2017). CrossRefGoogle Scholar
  8. 8.
    P.G. Schiavi, P. Altimari, A. Rubino, F. Pagnanelli, Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization. Electrochim. Acta 259, 711–722 (2018). CrossRefGoogle Scholar
  9. 9.
    L. Thiebaud, S. Legeai, J. Ghanbaja, N. Stein, Electrodeposition of high aspect ratio single crystalline tellurium nanowires from piperidinium-based ionic liquid. Electrochim. Acta 222, 528–534 (2016). CrossRefGoogle Scholar
  10. 10.
    C. Zhu, M.J. Panzer, Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. ACS Appl. Mater. Interfaces 7, 5624–5628 (2015). CrossRefGoogle Scholar
  11. 11.
    Y. Yang, Y. Chen, F. Liu, X. Chen, Y. Wu, Template-based fabrication and electrochemical performance of CoSb nanowire arrays. Electrochim. Acta 56, 6420–6425 (2011). CrossRefGoogle Scholar
  12. 12.
    A. Biswas, I.S. Bayer, A.S. Biris, T. Wang, E. Dervishi, F. Faupel, Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012). CrossRefGoogle Scholar
  13. 13.
    W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007). CrossRefGoogle Scholar
  14. 14.
    D. Mijatovic, J.C.T. Eijkel, A. van den Berg, Technologies for nanofluidic systems: top–down vs. bottom–up—a review. Lab Chip 5, 492 (2005). CrossRefGoogle Scholar
  15. 15.
    A. Umer, S. Naveed, N. Ramzan, M.S. Rafique, Selection of a suitable method for the synthesis of copper nanoparticles. Nano 7, 1230005 (2012). CrossRefGoogle Scholar
  16. 16.
    J. Hu, T.W. Odom, C.M. Lieber, chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999). CrossRefGoogle Scholar
  17. 17.
    C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Gösele, L. Samuelson, Nanowire-based one-dimensional electronics. Mater. Today 9, 28–35 (2006). CrossRefGoogle Scholar
  18. 18.
    N.I. Kovtyukhova, B.R. Martin, J.K.N. Mbindyo, P.A. Smith, B. Razavi, T.S. Mayer, T.E. Mallouk, Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J. Phys. Chem. B 105, 8762–8769 (2001). CrossRefGoogle Scholar
  19. 19.
    C. Martin-Olmos, H.I. Rasool, B.H. Weiller, J.K. Gimzewski, Graphene MEMS: AFM probe performance improvement. ACS Nano 7, 4164–4170 (2013). CrossRefGoogle Scholar
  20. 20.
    E. Cruz-Silva, F. López-Urías, E. Muñoz-Sandoval, B.G. Sumpter, H. Terrones, J.-C. Charlier, V. Meunier, M. Terrones, Electronic transport and mechanical properties of phosphorus- and phosphorus–nitrogen-doped carbon nanotubes. ACS Nano 3, 1913–1921 (2009). CrossRefGoogle Scholar
  21. 21.
    J.Y. Oh, Y.S. Kim, Y. Jung, S.J. Yang, C.R. Park, Preparation and exceptional mechanical properties of bone-mimicking size-tuned graphene oxide@carbon nanotube hybrid paper. ACS Nano 10, 2184–2192 (2016). CrossRefGoogle Scholar
  22. 22.
    Z. Li, Q. Guo, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Zhang, D. Zhang, enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 15, 8077–8083 (2015). CrossRefGoogle Scholar
  23. 23.
    F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015). CrossRefGoogle Scholar
  24. 24.
    R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, H.G. Xing, Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent raman spectroscopy. ACS Nano 8, 986–993 (2014). CrossRefGoogle Scholar
  25. 25.
    M. Rani, R. Kumar, Rajesh Kumar,  R. Singh, S.K. Chakarvarti, Preparation and characterization of Ag2Se nanowalled tubules by electrochemical method. Chalcogenide Lett. 10, 99–104 (2013)Google Scholar
  26. 26.
    C. Tazlaoanu, L. Ion, I. Enculescu, M. Sima, M. Enculescu, E. Matei, R. Neumann, R. Bazavan, D. Bazavan, S. Antohe, Transport properties of electrodeposited ZnO nanowires. Phys. E Low Dimens. Syst. Nanostruct. 40, 2504–2507 (2008). CrossRefGoogle Scholar
  27. 27.
    S. Öztürk, N. Klnç, N. Taşaltn, Z.Z. Öztürk, Fabrication of ZnO nanowires and nanorods. Phys. E Low Dimens. Syst. Nanostruct. 44, 1062–1065 (2012). CrossRefGoogle Scholar
  28. 28.
    P.S. Chinthamanipeta, Q. Lou, D.A. Shipp, Periodic titania nanostructures using block copolymer templates. ACS Nano 5, 450–456 (2011). CrossRefGoogle Scholar
  29. 29.
    P. Enzel, J.J. Zoller, T. Bein, Intrazeolite assembly and pyrolysis of polyacrylonitrile. J. Chem. Soc. Chem. Commun. 8, 633–635 (1992)CrossRefGoogle Scholar
  30. 30.
    C. Guerret-Piecourt, Y. Le Bouar, A. Loiseau, H. Pascard, Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372, 761–765 (1994)CrossRefGoogle Scholar
  31. 31.
    C.M. Bruinink, M. Péter, P.A. Maury, M. de Boer, L. Kuipers, J. Huskens, D.N. Reinhoudt, Capillary force lithography: fabrication of functional polymer templates as versatile tools for nanolithography. Adv. Funct. Mater. 16, 1555–1565 (2006). CrossRefGoogle Scholar
  32. 32.
    A. Sharma, A. Srivastava, Y. Jeon, B. Ahn, Template-assisted fabrication of nanostructured tin (β-Sn) arrays for bulk microelectronic packaging devices. Metals 8, 347 (2018). CrossRefGoogle Scholar
  33. 33.
    H. Shang, G. Cao, Template-based synthesis of nanorod or nanowire arrays, in Springer Handbook of Nanotechnology (Springer, Berlin, 2010), pp. 169–186CrossRefGoogle Scholar
  34. 34.
    J.B. Mohler, H.J. Sedusky, Electroplating for the Metallurgist, Engineer and Chemist (Chemical Publishing, New York, 1951)Google Scholar
  35. 35.
    F.R.N. Nabarro, P.J. Jackson, Growth of crystal whiskers—a review, in Growth and Perfection of Crystals, ed. by R.H. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York, 1958), pp. 11–102Google Scholar
  36. 36.
    B.Z. Tang, H. Xu, Preparation, alignment and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 32, 2567–2569 (1999)CrossRefGoogle Scholar
  37. 37.
    G.E. Possin, A method for forming very small diameter wires. Rev. Sci. Instrum. 41, 772–774 (1970)CrossRefGoogle Scholar
  38. 38.
    W.D. Williams, N. Giordano, Fabrication of 80 Å metal wires. Rev. Sci. Instrum. 55, 410–412 (1984)CrossRefGoogle Scholar
  39. 39.
    T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316–1319 (1993)CrossRefGoogle Scholar
  40. 40.
    S. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao, K. Suganuma, Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Phys. Chem. Chem. Phys. 17, 31110–31116 (2015). CrossRefGoogle Scholar
  41. 41.
    B.C. Ranu, R. Dey, T. Chatterjee, S. Ahammed, Copper nanoparticle-catalyzed carbon-carbon and carbon-heteroatom bond formation with a greener perspective. ChemSusChem 5 (2012) 22–44. CrossRefGoogle Scholar
  42. 42.
    S.E. Allen, R.R. Walvoord, R. Padilla-Salinas, M.C. Kozlowski, Aerobic copper-catalyzed organic reactions. Chem. Rev. 113, 6234–6458 (2013). CrossRefGoogle Scholar
  43. 43.
    Z.-Y. Shih, A.P. Periasamy, P.-C. Hsu, H.-T. Chang, Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Appl. Catal. B Environ. 132–133, 363–369 (2013). CrossRefGoogle Scholar
  44. 44.
    R. Kaur, B. Pal, Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis. Appl. Catal. A Gen. 491, 28–36 (2015). CrossRefGoogle Scholar
  45. 45.
    R.C. Pawar, D.H. Choi, J.S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015). CrossRefGoogle Scholar
  46. 46.
    S.M. Bergin, Y.H. Chen, A.R. Rathmell, P. Charbonneau, Z.Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996 (2012). CrossRefGoogle Scholar
  47. 47.
    G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007). CrossRefGoogle Scholar
  48. 48.
    K.A. Dean, A new era: nanotube displays. Nat. Photonics 1, 273–275 (2007). CrossRefGoogle Scholar
  49. 49.
    A.H. Li, S.H. Cheng, H.D. Li, Q. Yu, J.W. Liu, X.Y. Lv, Effect of nitrogen on deposition and field emission properties of boron-doped micro- and nano-crystalline diamond films. Nano Micro Lett. 2, 154–159 (2010). CrossRefGoogle Scholar
  50. 50.
    K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, D.G. Hasko, Field emission from dense, sparse, and patterned arrays of carbon nanofibers. Appl. Phys. Lett. 80, 2011–2013 (2002). CrossRefGoogle Scholar
  51. 51.
    B.K. Sarker, S.I. Khondaker, Thermionic emission and tunneling at carbon nanotube–organic semiconductor interface. ACS Nano 6, 4993–4999 (2012). CrossRefGoogle Scholar
  52. 52.
    L. Li, X. Fang, H.G. Chew, F. Zheng, T.H. Liew, X. Xu, Y. Zhang, S. Pan, G. Li, L. Zhang, Crystallinity-controlled germanium nanowire arrays: potential field emitters. Adv. Funct. Mater. 18, 1080–1088 (2008). CrossRefGoogle Scholar
  53. 53.
    D. Ye, S. Moussa, J.D. Ferguson, A.A. Baski, M.S. El-Shall, Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. Nano Lett. 12, 1265–1268 (2012). CrossRefGoogle Scholar
  54. 54.
    S. Ramanathan, Y. Chen, Y. Tzeng, Zinc oxide nanowire-based field emitters. Phys. E Low Dimens. Syst. Nanostruct. 43, 285–288 (2010). CrossRefGoogle Scholar
  55. 55.
    J. Joo, S.J. Lee, D.H. Park, Y.S. Kim, Y. Lee, C.J. Lee, S.R. Lee, Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatment. Nanotechnology 17, 3506–3511 (2006). CrossRefGoogle Scholar
  56. 56.
    C. Chang, T.K. Huang, H.K. Lin, Y.F. Tzeng, C.W. Peng, F.M. Pan, C.Y. Lee, H.T. Chiu, Growth of pagoda-topped tetragonal copper nanopillar arrays. ACS Appl. Mater. Interfaces 1, 1375–1378 (2009). CrossRefGoogle Scholar
  57. 57.
    J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She, Z.L. Wang, Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv. Mater. 15, 1835–1840 (2003). CrossRefGoogle Scholar
  58. 58.
    S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P.M.F.J. Costa, M. Song, B. Huang, C.T. Liu, P.K. Liaw, Y. Bando, D. Golberg, Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition. Adv. Mater. 21, 2387–2392 (2009). CrossRefGoogle Scholar
  59. 59.
    W.A. Deheer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, D. Ugarte, Aligned carbon nanotube films: production and optical and electronic properties. Science 268, 845–847 (1995). CrossRefGoogle Scholar
  60. 60.
    E.M. Garcia, J.S. Santos, E.C. Pereira, M.B.J.G. Freitas, Electrodeposition of cobalt from spent Li–ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J. Power Sources 185, 549–553 (2008). CrossRefGoogle Scholar
  61. 61.
    T. Gandhi, K.S. Raja, M. Misra, Synthesis of ZnTe nanowires onto TiO2 nanotubular arrays by pulse-reverse electrodeposition. Thin Solid Films 517, 4527–4533 (2009). CrossRefGoogle Scholar
  62. 62.
    M. Tagliazucchi, I. Szleifer, Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater. Today 18, 131–142 (2015). CrossRefGoogle Scholar
  63. 63.
    J. Vazquez-Arenas, L. Altamirano-Garcia, T. Treeratanaphitak, M. Pritzker, R. Luna-Sánchez, R. Cabrera-Sierra, Co–Ni alloy electrodeposition under different conditions of pH, current and composition. Electrochim. Acta 65, 234–243 (2012). CrossRefGoogle Scholar
  64. 64.
    T. Mahalingam, C. Sanjeeviraja, S. Esther Dali, M. Jayachandran, M.J. chockalingam, Galvanostatic deposition of Cu2O layers through the electrogeneration of base route. J. Mater. Sci. Lett. 17, 603–605 (1998). CrossRefGoogle Scholar
  65. 65.
    P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Cu2O: electrodeposition and characterization. Chem. Mater. 11, 3512–3517 (1999). CrossRefGoogle Scholar
  66. 66.
    E.W. Bohannan, M.G. Shumsky, J.A. Switzer, Epitaxial electrodeposition of copper(I) oxide on single-crystal gold (100). Chem. Mater. 11, 2289–2291 (1999). CrossRefGoogle Scholar
  67. 67.
    R.K. Dhillon, P. Singh, S.K. Gupta, S. Singh, R. Kumar, Study of high energy (MeV) N6+ ion and gamma radiation induced modifications in low density polyethylene (LDPE) polymer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 301, 12–16 (2013). CrossRefGoogle Scholar
  68. 68.
    M.K. Jaiswal, D. Kanjilal, R. Kumar, Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 314, 170–175 (2013). CrossRefGoogle Scholar
  69. 69.
    R. Kumar, P. Singh, S.K. Gupta, R. Gupta, M.K. Jaiswal, M. Prasad, A. Roychowdhury, R.P. Chauhan, D. Das, Radiation induced nano-scale free volume modifications in amorphous polymeric material: a study using positron annihilation lifetime spectroscopy. J. Radioanal. Nucl. Chem. 314, 1659–1666 (2017). CrossRefGoogle Scholar
  70. 70.
    S.K. Gupta, R. Gupta, P. Singh, V. Kumar, M.K. Jaiswal, S.K. Chakarvarti, R. Kumar, Modifications in physico-chemical properties of 100 MeV oxygen ions irradiated polyimide Kapton-H polymer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 406, 188–192 (2017). CrossRefGoogle Scholar
  71. 71.
    S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Phys. E Low Dimens. Syst. Nanostruct. 91, 72–81 (2017). CrossRefGoogle Scholar
  72. 72.
    S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater. Chem. Phys. 202, 56–64 (2017). CrossRefGoogle Scholar
  73. 73.
    W.H. Chen, H.C. Cheng, C.F. Yu, The mechanical, thermodynamic, and electronic properties of cubic Au4Al crystal via first-principles calculations. J. Alloys Compd. 689, 857–864 (2016). CrossRefGoogle Scholar
  74. 74.
    V. Mote, Y. Purushotham, B. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012). CrossRefGoogle Scholar
  75. 75.
    H. Yadav, N. Sinha, S. Goel, B. Kumar, Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. J. Alloys Compd. 689, 333–341 (2016). CrossRefGoogle Scholar
  76. 76.
    C. Narula, R.P. Chauhan, High dose gamma ray exposure effect on the properties of CdSe nanowires. Radiat. Phys. Chem. 144, 405–412 (2017). CrossRefGoogle Scholar
  77. 77.
    Rashi Gupta, R.P. Chauhan, S.K. Chakarvarti, Rajesh Kumar, Gamma ray induced modifications in copper microwires synthesized using track-etched membrane. Vacuum 148, 239–247 (2018). CrossRefGoogle Scholar
  78. 78.
    A. Khorsand Zak, W.H. Abd. M.E. Majid, R. Abrishami, Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011). CrossRefGoogle Scholar
  79. 79.
    E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952). CrossRefGoogle Scholar
  80. 80.
    K. Barmak, A. Darbal, K.J. Ganesh, P.J. Ferreira, J.M. Rickman, T. Sun, B. Yao, A.P. Warren, K.R. Coffey, Surface and grain boundary scattering in nanometric Cu thin films: a quantitative analysis including twin boundaries. J. Vac. Sci. Technol. A Vac Surf. Film 32, 61503 (2014). CrossRefGoogle Scholar
  81. 81.
    A.F. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382–1389 (1970). CrossRefGoogle Scholar
  82. 82.
    Y. Kitaoka, T. Tono, S. Yoshimoto, T. Hirahara, S. Hasegawa, T. Ohba, Direct detection of grain boundary scattering in damascene Cu wires by nanoscale four-point probe resistance measurements. Appl. Phys. Lett. 95, 52110 (2009). CrossRefGoogle Scholar
  83. 83.
    Q. Huang, C.M. Lilley, M. Bode, R. Divan, Surface and size effects on the electrical properties of Cu nanowires. J. Appl. Phys. 104, 23709 (2008). CrossRefGoogle Scholar
  84. 84.
    Rashi Gupta, R.P. Chauhan, S.K. Chakarvarti, Rajesh Kumar, Effect of SHI on properties of template synthesized Cu nanowires. Ionics 24, 1–12 (2018). CrossRefGoogle Scholar
  85. 85.
    J. Homoth, M. Wenderoth, T. Druga, L. Winking, R.G. Ulbrich, C. Bobisch, B. Weyers, A. Bannani, E. Zubkov, a M. Bernhart, M.R. Kaspers, R. Möller, Electronic transport on the nanoscale: ballistic transmission and Ohm’s law. Nano Lett. 9, 1588–1592 (2009). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rashi Gupta
    • 1
  • R. P. Chauhan
    • 2
  • S. K. Chakarvarti
    • 2
  • M. K. Jaiswal
    • 3
  • D. Ghoshal
    • 4
  • S. Basu
    • 4
  • S. Suresh
    • 4
  • Stephen F. Bartolucci
    • 5
  • N. Koratkar
    • 4
    • 6
  • Rajesh Kumar
    • 1
    • 4
    Email author
  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityNew DelhiIndia
  2. 2.Department of PhysicsNational Institute of TechnologyKurukshetraIndia
  3. 3.Department of Physics, Shaheed Rajguru College of Applied Sciences for WomenUniversity of DelhiNew DelhiIndia
  4. 4.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA
  5. 5.U.S. Army Armaments Research Development and Engineering CenterBenet LaboratoriesWatervlietUSA
  6. 6.Department of Material Science and EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations