Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Extended visible light harvesting and boosted charge carrier dynamics in heterostructured zirconate–FeS2 photocatalysts for efficient solar water splitting

  • 382 Accesses

  • 1 Citations


Limited visible light absorption, slow charge transference, and high recombination are some of the main problems associated with low efficiency in photocatalytic processes. For these reasons, in the present work, we develope novel zirconate–FeS2 heterostructured photocatalysts with improved visible light harvesting, effective charge separation and high photocatalytic water splitting performance. Herein, alkali and alkaline earth metal zirconates are prepared by a solid state reaction and coupled to FeS2 through a simple wet impregnation method. The incorporation of FeS2 particles induces visible light absorption and electron injection in zirconates, while the appropriate coupling of the semiconductors in the heterostructure allows an enhanced charge separation and suppression of the recombination. The obtained heterostructures exhibit high and stable photocatalytic activity for water splitting under visible light, showing competitive efficiencies among other reported materials. The highest hydrogen evolution rate (4490 µmol g−1 h−1) is shown for BaZrO3–FeS2 and corresponds to more than 20 times the activity of the bare BaZrO3. In summary, this work proposes novel visible light active heterostructures for efficient visible light photocatalytic water splitting.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)

  2. 2.

    M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Water splitting: one-dimensional TiO2-nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017)

  3. 3.

    M. Li, Y. Chen, W. Li, X. Li, H. Tian, X. Wei, Z. Ren, G. Han, Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small 13, 1604115 (2017)

  4. 4.

    Q. Wang, Y. Shi, Q. Ma, D. Gao, J. Zhong, J. Li, F. Wang, Y. He, R. Wang, A flower-like TiO2 with photocatalytic hydrogen evolution activity modified by Zn(II) porphyrin photocatalysts. J. Mater. Sci. Mater. Electron. 28, 2123–2127 (2016)

  5. 5.

    H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016)

  6. 6.

    A. Samokhvalov, Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 72, 981–1000 (2017)

  7. 7.

    R.A. Rather, S. Singh, B. Pal, A Cu+1/Cu0-TiO2 mesoporous nanocomposite exhibits improved H2 production from H2O under direct solar irradiation. J. Catal. 346, 1–9 (2017)

  8. 8.

    A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

  9. 9.

    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain. Energy Rev. 11, 401–425 (2007)

  10. 10.

    T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Int. J. Hydrogen Energy 31, 786–796 (2006)

  11. 11.

    Y. Inoue, Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009)

  12. 12.

    T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7), 900 (2016)

  13. 13.

    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, Overall photocatalytic water splitting on Na2ZrxTi6−xO13 (x = 0,1) nanobelts modified with metal oxide nanoparticles as cocatalysts. Int. J. Hydrogen Energy 42, 14547–14559 (2017)

  14. 14.

    S. Tanigawa, T. Takashima, H. Irie, Enhanced visible-light-sensitive two-step overall water-splitting based on band structure controls of titanium dioxide and strontium titanate. J. Mater. Sci. Chem. Eng. 5, 129–141 (2017)

  15. 15.

    A. Alzahrani, D. Barbash, A. Samokhvalov, “One-pot” synthesis and photocatalytic hydrogen generation with nanocrystalline Ag(0)/CaTiO3 and in situ mechanistic studies. J. Phys. Chem. C 120, 19970–19979 (2016)

  16. 16.

    A.M. Huerta-Flores, J. Chen, L.M. Torres-Martínez, A. Ito, E. Moctezuma, T. Goto, Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution. Fuel 197, 174–185 (2017)

  17. 17.

    M. Matsuoka, Y. Ide, M. Ogawa, Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate. Phys. Chem. Chem. Phys. 16, 3520–3522 (2014)

  18. 18.

    T. Grewe, H. Tüysüz, Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Appl. Mater. Interfaces 7, 23153–23162 (2015)

  19. 19.

    K. Saito, K. Koga, A. Kudo, amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Dalton Trans. 40, 3909–3913 (2011)

  20. 20.

    Y. Miseki, A. Kudo, Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping. Chem. Sust. Chem. 4, 245–251 (2011)

  21. 21.

    K. Nakagawa, T. Jia, W. Zheng, S.M. Fairclough, M. Katoh, S. Sugiyama, S.C.E. Tsang, Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chem. Commun. 50, 13702–13705 (2014)

  22. 22.

    A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, SrZrO3 powders: alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting. Fuel 158, 66–71 (2015)

  23. 23.

    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sánchez, Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel 181, 670–679 (2016)

  24. 24.

    Z. Khan, M. Qureshi, Tantalum doped BaZrO3 for efficient photocatalytic hydrogen generation by water splitting. Catal. Commun. 28, 82–85 (2012)

  25. 25.

    P. Wu, J. Shi, Z. Zhou, W. Tang, L. Guo, CaTaO2N-CaZrO3 solid solution: Band-structure engineering and visible-light-driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 37, 13704–13710 (2012)

  26. 26.

    N. Tiwari, R.K. Kuraria, S.R. Kuraria, R.K. Tamrakar, Mechanoluminescence, photoluminescence and thermoluminiscence studies of SrZrO3:Ce phosphor. J. Radiat. Res. Appl. Sci. 8, 68–76 (2015)

  27. 27.

    L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and Green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloy. Compd. 471, 253–258 (2009)

  28. 28.

    E.C.C. De Souza, R. Muccillo, Properties and applications of perovskite proton conductors. Mater. Res. 13, 385–394 (2010)

  29. 29.

    J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4, 2917–2940 (2014)

  30. 30.

    F. Dogan, H. Lin, M. Guilloux-Viry, O. Peña, Focus on properties and applications of perovskites. Adv. Mater. 16, 020301 (2015)

  31. 31.

    G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45, 5951–5984 (2016)

  32. 32.

    L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, A. Michalowicz, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloys Compd. 471, 253–258 (2009)

  33. 33.

    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. J. Photochem. Photobiol. A 356, 166–176 (2018)

  34. 34.

    L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. (2018).

  35. 35.

    Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)

  36. 36.

    P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau. Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties, Proceedings of the 35th Photovoltaics Specialists Conference, Institute of Electrical and Electronics Engineeris (IEEE), 002965–002969 (2010)

  37. 37.

    P. Prabukanthan, R.J. Soukup, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011)

  38. 38.

    A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, A.P. Singh, B. Wickman, Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal. J. Mater. Sci. (2018).

  39. 39.

    P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films. J. Mater. Sci. 29, 11951–11963 (2018)

  40. 40.

    M. Wang, H. Qin, Y. Fang, J. Liu, L. Meng, FeS2-sensitized ZnO/ZnS nanorod arrays for the photoanodes of quantum-dot-sensitized solar cells. RSC Adv. 5, 105324–105328 (2015)

  41. 41.

    T.R. Kuo, H.J. Liao, Y.T. Chen, C.Y. Wei, C.C. Chang, Y.C. Chen, Y.H. Chang, J.C. Lin, Y.C. Lee, C.Y. Wen, S.S. Li, K.H. Lin, D.Y. Wang, Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 20, 1640–1647 (2018)

  42. 42.

    Y. Zhong, J. Liu, Z. Lu, H. Xia, Hierarchical FeS2 nanosheet@Fe2O3 nanosphere heterostructure as promising electrode material for supercapacitors. Mater. Lett. 166, 223–226 (2016)

  43. 43.

    M. Gong, Q. Liu, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, J.Z. Wu, Printable nanocomposite FeS2-PbS nanocrystals/graphene heterojunction photodetectors for broadband photodetection. ACS Appl. Mater. Interfaces 9(33), 27801–27808 (2017)

  44. 44.

    Q. Tian, L. Zhang, J. Liu, N. Li, Q. Ma, J. Zhou, Y. Sun, Synthesis of MoS2/SrZrO3 heterostructures and their photocatalytic H2 evolution under UV irradiation. RSC Adv. 5, 734–739 (2015)

  45. 45.

    L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron 29(12), 10395–10410 (2018)

  46. 46.

    J. Meng, X. Fu, K. Du, X. Chen, Q. Lin, X. Wei, J. Li, Z. Zhang, BaZrO3 hollow nanostructure with Fe (III) doping for photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy 43, 9224–9232 (2018)

  47. 47.

    G.C. Mather, C. Dussarrat, J. Etourneau, A.R. West, A review of cation-ordered rock salt superstructure oxides. J. Mater. Chem. 10, 2219–2230 (2000)

  48. 48.

    I. Rodionov, A. ZverevaI, Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ. Chem. Rev. 85, 248–279 (2016)

  49. 49.

    Q. Wang, J.H. Sohn, S.Y. Park, J.S. Choi, J.Y. Lee, J.S. Chung, Preparation and catalytic activity of K4Zr5O12 for the oxidation of soot from vehicle engine emissions. J. Ind. Eng. Chem. 16, 68–73 (2010)

  50. 50.

    Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskite-related compounds. Mater. Chem. Phys. 96, 234–239 (2006)

  51. 51.

    T.J. Bastow, P.J. Dirken, M.E. Smith, Factors controlling the 17O NMR chemical shift in ionic mixed metal oxides. J. Phys. Chem. 100, 18539–18545 (1996)

  52. 52.

    R.I. Eglitis, Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ionics 230, 43–47 (2013)

  53. 53.

    P. Stoch, L.J. Szczerba, D. Madej, Z. Pedzich, Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc. 32, 665–670 (2012)

  54. 54.

    G. Celik, S. Cabuk, First-principles study of electronic structure and optical properties of Sr(Ti,Zr)O3. Cent. Eur. J. Phys. 11, 387–393 (2013)

  55. 55.

    Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye, Y. Bi, Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci Rep 3, 2720 (2013)

  56. 56.

    V.M. Longo, L.S. Cavalcante, M.G.S. Costa, M.L. Moreira, A.T. De Figueiredo, J. Andrés, J. Varela, E. Longo, First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor. Chem. Acc. 124, 385–394 (2009)

  57. 57.

    M. Wiegel, M.H.J. Emond, E.R. Stobbe, G. Blasse, Luminescence of alkali tantalates and niobates. J. Phys. Chem. Solids 55, 773–778 (1994)

  58. 58.

    M. Wiegel, M. Hamoumi, G. Blasse, Luminescence and non linear optical properties of perovskite-like niobates and titanates. Mater. Chem. Phys. 36, 289–293 (1994)

  59. 59.

    B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7, 2592–2597 (2014)

  60. 60.

    G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D.J. Miller, L.A. Curtiss, X. Ji, K. Amine, Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2, 17090 (2017)

  61. 61.

    X. Wang, J. Xie, C. Min-Li, Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 3, 1235–1242 (2015)

  62. 62.

    M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film. Nanoscale Res. Lett. 10, 54 (2015)

  63. 63.

    X. Gao, X. Liu, Z. Zhu, X. Wang, Z. Xie, Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Sci. Rep. 6, 30543 (2016)

  64. 64.

    H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan, G. Fang, Low temperature hydrothermal synthesis of SrTiO3 nanoparticles without alkali and their effective photocatalytic activity. J. Adv. Ceram. 5, 298–307 (2016)

  65. 65.

    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)

Download references


The authors would like to thank CONACYT (CB-256795-2016, CB-2014-237049, INFRA-2015-252753, PN-2015-01-487, NRF-2016-278729, and PhD Scholarship 386267), SEP (PROFOCIE-2014-19-MSU0011T-1, PRODEP-103.5/15/14156), UANL (PAICYT 2018 IT633-18), FIC-UANL (PAIFIC 2015-5) and the Swedish Research Council Formas. J.M. Mora-Hernandez thanks to Cátedras CONACYT ID7708.

Author information

Correspondence to Leticia M. Torres-Martínez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huerta-Flores, A.M., Mora-Hernández, J.M., Torres-Martínez, L.M. et al. Extended visible light harvesting and boosted charge carrier dynamics in heterostructured zirconate–FeS2 photocatalysts for efficient solar water splitting. J Mater Sci: Mater Electron 29, 18957–18970 (2018).

Download citation