Skip to main content

Study on magnetic properties of NiFe/Cu multisegmented nanowire arrays with different Cu thicknesses via FORC analysis: coercivity, interaction, magnetic reversibility

Abstract

Two sets of the large hexagonally ordered arrays of Ni30Fe70/Cu multisegmented nanowires (NWs) with different non-ferromagnetic (NFM) thicknesses of 4 and 12 nm were grown by ac pulse electrodeposition method into anodic aluminum oxide templates with a pore diameter of 40 nm and 100 nm inter-pore distance. The shape anisotropy of the single domain (SD) FM segments was varied from symmetrical-shaped (aspect ratio ~ 1) to rod-shaped (aspect ratio > 1). X-ray diffraction result showed a change in the crystalline phase from NiFe BCC (110) to Cu FCC (111) with increasing the NFM thickness. First-Order Reversal Curve (FORC) method was used to study magnetizing and demagnetizing interactions among the SD segments of the multisegmented NW arrays. The study mainly has been focused on the clarification of the effect of NFM thickness on magnetostatic interactions in the presence of high reversibility, which was estimated to be more than 50%. Weakening the magnetizing coupling of the FM segments through increasing NFM thickness is recognized by a ridge along the coercivity axis of the FORC diagram. With increasing the NFM thickness, the demagnetizing interactions decrease which can be a direct consequence of decreasing the magnetizing NFM thickness. Increasing the NFM thickness also leads to increasing the magnetic reversibility which is characterized on FORC diagrams by a shift in the FORC distribution to the lower coercivity values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

NWs:

Nanowires

NFM:

Non-ferromagnetic

FM:

Ferromagnetic

AAO:

Anodic aluminum oxide

FORC:

First-Order Reversal Curve

MHLs:

Major hysteresis loops

VSM:

Vibrating sample magnetometry

SD:

Single domain

References

  1. D.A. Gilbert, G.T. Zimanyi, R.K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. Vicent, K. Liu, Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves, Sci. Rep. 4, 4204 (2014)

    Article  Google Scholar 

  2. E. Rando, S. Allende, Magnetic reversal modes in multisegmented nanowire arrays with long aspect ratio. J. Appl. Phys. 118, 013905 (2015)

    Article  Google Scholar 

  3. E.M. Palmero, F. Béron, C. Bran, R.P. del Real, M. Vázquez, Magnetic interactions in compositionally modulated nanowire arrays. Nanotechnology 27, 435705 (2016)

    Article  Google Scholar 

  4. S. Bochmann, A. Fernandez-Pacheco, M. Mačković, A. Neff, K. Siefermann, E. Spiecker, R. Cowburn, J. Bachmann, Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of ‘bits’. RSC Adv. 7, 37627–37635 (2017)

    Article  CAS  Google Scholar 

  5. M. Chen, C.-L. Chien, P.C. Searson, Potential modulated multilayer deposition of multisegment Cu/Ni nanowires with tunable magnetic properties. Chem. Mater. 18, 1595–1601 (2006)

    Article  CAS  Google Scholar 

  6. S. Krimpalis, O.-G. Dragos, A.-E. Moga, N. Lupu, H. Chiriac, Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires. J. Mater. Res. 26, 1081–1090 (2011)

    Article  CAS  Google Scholar 

  7. P. Sergelius, J.H. Lee, O. Fruchart, M.S. Salem, S. Allende, R.A. Escobar, J. Gooth, R. Zierold, J.-C. Toussaint, S. Schneider, Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition. Nanotechnology 28, 065709 (2017)

    Article  Google Scholar 

  8. C. Sousa, D. Leitao, M. Proenca, J. Ventura, A. Pereira, J. Araujo, Nanoporous alumina as templates for multifunctional applications. Appl. Phys. Rev. 1, 031102 (2014)

    Article  Google Scholar 

  9. A. Ramazani, M. Ghaffari, M.A. Kashi, F. Kheiry, F. Eghbal, A new approach to fabricating magnetic multilayer nanowires by modifying the ac pulse electrodeposition in a single bath. J. Phys. D Appl. Phys. 47, 355003 (2014)

    Article  Google Scholar 

  10. L.-P. Carignan, C. Lacroix, A. Ouimet, M. Ciureanu, A. Yelon, D. Ménard, Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires. J. Appl. Phys. 102, 023905 (2007)

    Article  Google Scholar 

  11. L. Elbaile, I. Cubero, R. Crespo, V. Vega, J. García, Magnetic behavior in arrays of Ni79Fe21 and Ni79Fe21/Cu nanowires. J. Alloy Compd. 536, S359–S364 (2012)

    Article  CAS  Google Scholar 

  12. S.S. Mehr, A. Ramezani, M.A. Kashi, S. Krimpalis, Probing the interplay between reversibility and magnetostatic interactions within arrays of multisegmented nanowires, J. Mater. Sci. 53, 14629–14644 (2018)

    Article  Google Scholar 

  13. J.D.L.T. Medina, M. Darques, T. Blon, L. Piraux, A. Encinas, Effects of layering on the magnetostatic interactions in microstructures of CoxCu1 – x∕Cu nanowires. Phys. Rev. B 77, 014417 (2008)

    Article  Google Scholar 

  14. A. Núñez, L. Pérez, M. Abuín, J. Araujo, M. Proenca, Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires. J. Phys. D Appl. Phys. 50, 155003 (2017)

    Article  Google Scholar 

  15. F. Béron, L.-P. Carignan, D. MÉnard, A. Yelon, Magnetic behavior of Ni/Cu multilayer nanowire arrays studied by first-order reversal curve diagrams. IEEE Trans. Magn. 44, 2745–2748 (2008)

    Article  Google Scholar 

  16. L. Sun, Y. Hao, C.-L. Chien, P.C. Searson, Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 49, 79–102 (2005)

    Article  CAS  Google Scholar 

  17. M.P. Proenca, C.T. Sousa, J. Ventura, J. Garcia, M. Vazquez, J.P. Araujo, Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC. J. Alloy Compd. 699, 421–429 (2017)

    Article  CAS  Google Scholar 

  18. F. Bearon, L. Clime, M. Ciureanu, D. Ménard, R.W. Cochrane, A. Yelon, First-order reversal curves diagrams of ferromagnetic soft nanowire arrays. IEEE Trans. Magn. 42, 3060–3062 (2006)

    Article  Google Scholar 

  19. S. Samanifar, M.A. Kashi, A. Ramazani, M. Alikhani, Reversal modes in FeCoNi nanowire arrays: correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 378, 73–83 (2015)

    Article  CAS  Google Scholar 

  20. F. Béron, L.-P. Carignan, D. Ménard, A. Yelon, Extracting individual properties from global behaviour: first-order reversal curve method applied to magnetic nanowire arrays, in Electrodeposited Nanowires and Their Applications, ed. by N. Lupu (InTech, Zagreb, 2010)

    Google Scholar 

  21. C. Pike, First-order reversal-curve diagrams and reversible magnetization. Phys. Rev. B 68, 104424 (2003)

    Article  Google Scholar 

  22. A.P. Roberts, D. Heslop, X. Zhao, C.R. Pike, Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Rev. Geophys. 52, 557–602 (2014)

    Article  Google Scholar 

  23. M.A. Kashi, A. Ramazani, A. Esmaeily, Magnetostatic interaction investigation of CoFe alloy nanowires by first-order reversal-curve diagrams. IEEE Trans. Magn. 49, 1167–1171 (2013)

    Article  CAS  Google Scholar 

  24. L. Clime, F. Béron, P. Ciureanu, M. Ciureanu, R. Cochrane, A. Yelon, Characterization of individual ferromagnetic nanowires by in-plane magnetic measurements of arrays. J. Magn. Magn. Mater. 299, 487–491 (2006)

    Article  CAS  Google Scholar 

  25. C.-I. Dobrotă, A. Stancu, What does a first-order reversal curve diagram really mean? A study case: array of ferromagnetic nanowires. J. Appl. Phys. 113, 043928 (2013)

    Article  Google Scholar 

  26. P. Sergelius, J.G. Fernandez, S. Martens, M. Zocher, T. Böhnert, V.V. Martinez, V.M. de la Prida, D. Görlitz, K. Nielsch, Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study. J. Phys. D Appl. Phys. 49, 145005 (2016)

    Article  Google Scholar 

  27. A. Ramazani, V. Asgari, A. Montazer, M.A. Kashi, Tuning magnetic fingerprints of FeNi nanowire arrays by varying length and diameter. Curr. Appl. Phys. 15, 819–828 (2015)

    Article  Google Scholar 

  28. M. Kumari, M. Widdrat, É Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116, 124304 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Kashan for providing the financial support of this work by Grant No. 159023/52.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Shojaie Mehr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shojaie Mehr, S., Ramazani, A. & Almasi Kashi, M. Study on magnetic properties of NiFe/Cu multisegmented nanowire arrays with different Cu thicknesses via FORC analysis: coercivity, interaction, magnetic reversibility. J Mater Sci: Mater Electron 29, 18771–18780 (2018). https://doi.org/10.1007/s10854-018-0002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0002-4