Abstract
Two sets of the large hexagonally ordered arrays of Ni30Fe70/Cu multisegmented nanowires (NWs) with different non-ferromagnetic (NFM) thicknesses of 4 and 12 nm were grown by ac pulse electrodeposition method into anodic aluminum oxide templates with a pore diameter of 40 nm and 100 nm inter-pore distance. The shape anisotropy of the single domain (SD) FM segments was varied from symmetrical-shaped (aspect ratio ~ 1) to rod-shaped (aspect ratio > 1). X-ray diffraction result showed a change in the crystalline phase from NiFe BCC (110) to Cu FCC (111) with increasing the NFM thickness. First-Order Reversal Curve (FORC) method was used to study magnetizing and demagnetizing interactions among the SD segments of the multisegmented NW arrays. The study mainly has been focused on the clarification of the effect of NFM thickness on magnetostatic interactions in the presence of high reversibility, which was estimated to be more than 50%. Weakening the magnetizing coupling of the FM segments through increasing NFM thickness is recognized by a ridge along the coercivity axis of the FORC diagram. With increasing the NFM thickness, the demagnetizing interactions decrease which can be a direct consequence of decreasing the magnetizing NFM thickness. Increasing the NFM thickness also leads to increasing the magnetic reversibility which is characterized on FORC diagrams by a shift in the FORC distribution to the lower coercivity values.
This is a preview of subscription content, access via your institution.








Abbreviations
- NWs:
-
Nanowires
- NFM:
-
Non-ferromagnetic
- FM:
-
Ferromagnetic
- AAO:
-
Anodic aluminum oxide
- FORC:
-
First-Order Reversal Curve
- MHLs:
-
Major hysteresis loops
- VSM:
-
Vibrating sample magnetometry
- SD:
-
Single domain
References
D.A. Gilbert, G.T. Zimanyi, R.K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. Vicent, K. Liu, Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves, Sci. Rep. 4, 4204 (2014)
E. Rando, S. Allende, Magnetic reversal modes in multisegmented nanowire arrays with long aspect ratio. J. Appl. Phys. 118, 013905 (2015)
E.M. Palmero, F. Béron, C. Bran, R.P. del Real, M. Vázquez, Magnetic interactions in compositionally modulated nanowire arrays. Nanotechnology 27, 435705 (2016)
S. Bochmann, A. Fernandez-Pacheco, M. Mačković, A. Neff, K. Siefermann, E. Spiecker, R. Cowburn, J. Bachmann, Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of ‘bits’. RSC Adv. 7, 37627–37635 (2017)
M. Chen, C.-L. Chien, P.C. Searson, Potential modulated multilayer deposition of multisegment Cu/Ni nanowires with tunable magnetic properties. Chem. Mater. 18, 1595–1601 (2006)
S. Krimpalis, O.-G. Dragos, A.-E. Moga, N. Lupu, H. Chiriac, Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires. J. Mater. Res. 26, 1081–1090 (2011)
P. Sergelius, J.H. Lee, O. Fruchart, M.S. Salem, S. Allende, R.A. Escobar, J. Gooth, R. Zierold, J.-C. Toussaint, S. Schneider, Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition. Nanotechnology 28, 065709 (2017)
C. Sousa, D. Leitao, M. Proenca, J. Ventura, A. Pereira, J. Araujo, Nanoporous alumina as templates for multifunctional applications. Appl. Phys. Rev. 1, 031102 (2014)
A. Ramazani, M. Ghaffari, M.A. Kashi, F. Kheiry, F. Eghbal, A new approach to fabricating magnetic multilayer nanowires by modifying the ac pulse electrodeposition in a single bath. J. Phys. D Appl. Phys. 47, 355003 (2014)
L.-P. Carignan, C. Lacroix, A. Ouimet, M. Ciureanu, A. Yelon, D. Ménard, Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires. J. Appl. Phys. 102, 023905 (2007)
L. Elbaile, I. Cubero, R. Crespo, V. Vega, J. García, Magnetic behavior in arrays of Ni79Fe21 and Ni79Fe21/Cu nanowires. J. Alloy Compd. 536, S359–S364 (2012)
S.S. Mehr, A. Ramezani, M.A. Kashi, S. Krimpalis, Probing the interplay between reversibility and magnetostatic interactions within arrays of multisegmented nanowires, J. Mater. Sci. 53, 14629–14644 (2018)
J.D.L.T. Medina, M. Darques, T. Blon, L. Piraux, A. Encinas, Effects of layering on the magnetostatic interactions in microstructures of CoxCu1 – x∕Cu nanowires. Phys. Rev. B 77, 014417 (2008)
A. Núñez, L. Pérez, M. Abuín, J. Araujo, M. Proenca, Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires. J. Phys. D Appl. Phys. 50, 155003 (2017)
F. Béron, L.-P. Carignan, D. MÉnard, A. Yelon, Magnetic behavior of Ni/Cu multilayer nanowire arrays studied by first-order reversal curve diagrams. IEEE Trans. Magn. 44, 2745–2748 (2008)
L. Sun, Y. Hao, C.-L. Chien, P.C. Searson, Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 49, 79–102 (2005)
M.P. Proenca, C.T. Sousa, J. Ventura, J. Garcia, M. Vazquez, J.P. Araujo, Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC. J. Alloy Compd. 699, 421–429 (2017)
F. Bearon, L. Clime, M. Ciureanu, D. Ménard, R.W. Cochrane, A. Yelon, First-order reversal curves diagrams of ferromagnetic soft nanowire arrays. IEEE Trans. Magn. 42, 3060–3062 (2006)
S. Samanifar, M.A. Kashi, A. Ramazani, M. Alikhani, Reversal modes in FeCoNi nanowire arrays: correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 378, 73–83 (2015)
F. Béron, L.-P. Carignan, D. Ménard, A. Yelon, Extracting individual properties from global behaviour: first-order reversal curve method applied to magnetic nanowire arrays, in Electrodeposited Nanowires and Their Applications, ed. by N. Lupu (InTech, Zagreb, 2010)
C. Pike, First-order reversal-curve diagrams and reversible magnetization. Phys. Rev. B 68, 104424 (2003)
A.P. Roberts, D. Heslop, X. Zhao, C.R. Pike, Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Rev. Geophys. 52, 557–602 (2014)
M.A. Kashi, A. Ramazani, A. Esmaeily, Magnetostatic interaction investigation of CoFe alloy nanowires by first-order reversal-curve diagrams. IEEE Trans. Magn. 49, 1167–1171 (2013)
L. Clime, F. Béron, P. Ciureanu, M. Ciureanu, R. Cochrane, A. Yelon, Characterization of individual ferromagnetic nanowires by in-plane magnetic measurements of arrays. J. Magn. Magn. Mater. 299, 487–491 (2006)
C.-I. Dobrotă, A. Stancu, What does a first-order reversal curve diagram really mean? A study case: array of ferromagnetic nanowires. J. Appl. Phys. 113, 043928 (2013)
P. Sergelius, J.G. Fernandez, S. Martens, M. Zocher, T. Böhnert, V.V. Martinez, V.M. de la Prida, D. Görlitz, K. Nielsch, Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study. J. Phys. D Appl. Phys. 49, 145005 (2016)
A. Ramazani, V. Asgari, A. Montazer, M.A. Kashi, Tuning magnetic fingerprints of FeNi nanowire arrays by varying length and diameter. Curr. Appl. Phys. 15, 819–828 (2015)
M. Kumari, M. Widdrat, É Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116, 124304 (2014)
Acknowledgements
The authors gratefully acknowledge the University of Kashan for providing the financial support of this work by Grant No. 159023/52.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Shojaie Mehr, S., Ramazani, A. & Almasi Kashi, M. Study on magnetic properties of NiFe/Cu multisegmented nanowire arrays with different Cu thicknesses via FORC analysis: coercivity, interaction, magnetic reversibility. J Mater Sci: Mater Electron 29, 18771–18780 (2018). https://doi.org/10.1007/s10854-018-0002-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-018-0002-4