Skip to main content
Log in

Growth of size-controllable tetragonal rutile stannic oxide nanostructures by co-precipitation route for eosin Y dye degradation under solar radiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple one step co-precipitation route was employed to synthesize the size controlled quantum dots (size ~ 3 nm) by maintaining the pH value at 6, without addition of capping agent. The effect of different annealing temperatures on the structural and optical properties of as synthesized sample have been explained. XRD analysis of sample showed the formation of pure rutile SnO2 quantum dots with tetragonal rutile structure for all the prepared samples. The SnO2 sample prepared by co-precipitation route was annealed at different temperatures and photo catalytic activities of annealed samples at various temperatures were investigated under direct solar irradiation. The obtained prepared sample with smallest size (3 nm) annealed at 300 °C displayed excellent degradation of Eosin Y (EY) dye. This is attributed to small grain size, tuned band gap, high crystallinity and high interfacial surface area. Quantum confinement effect enhanced the catalyst performance by creating oxygen vacancies and enabling the efficient charge transportation through discrete energy levels. Synthesized samples of SnO2 was subjected to the photocatalysis experiment to determine their photodegradation efficiency and was found to be lower for annealed samples than that shown by SnO2 quantum dots. QDs showed 73% degradation efficiency for EY dye when illuminated under sunlight for an hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Zhao, Z. Zhang, H. Dang, Preparation of tin nanoparticles by solution dispersion. Mater. Sci. Eng. A 359, 405–407 (2003). https://doi.org/10.1016/S0921-5093(03)00395-2

    Article  Google Scholar 

  2. V. Inderan, S.Y. Lim, T.S. Ong, S. Bastien, N. Braidy, H.L. Lee, Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method. Superlattices Microstruct. 88, 396–402 (2015). https://doi.org/10.1016/j.spmi.2015.09.031

    Article  Google Scholar 

  3. R. Adnan, N.A. Razana, I.A. Rahman, M.A. Farrukh, Synthesis and characterization of high surface area tin oxide nanoparticles via the sol–gel method hydrogenation styrene. J. Chin. Chem. Soc. 57 222–229 (2010)

    Article  Google Scholar 

  4. T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal, R. Jayaprakash, Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater. Lett. 62, 3437–3440 (2008). https://doi.org/10.1016/j.matlet.2008.02.062

    Article  Google Scholar 

  5. S.-C. Lee, J.-H. Lee, T.-S. Oh, Y.-H. Kim, Fabrication of tin oxide film by sol–gel method for photovoltaic solar cell system. Sol. Energy Mater. Sol. Cells 75, 481–487 (2003). https://doi.org/10.1016/S0927-0248(02)00201-5

    Article  Google Scholar 

  6. S. Schiller, U. Heisig, K. Steinfelder, J. Strümpfel, R. Voigt, R. Fendler et al., On the investigation of d.c. plasmatron discharges by optical emission spectrometry. Thin Solid Films 96, 235–240 (1982). https://doi.org/10.1016/0040-6090(82)90247-4

    Article  Google Scholar 

  7. R.S. Niranjan, Y.K. Hwang, D.K. Kim, S.H. Jhung, J.S. Chang, I.S. Mulla, Nanostructured tin oxide: synthesis and gas-sensing properties. Mater. Chem. Phys. 92, 384–388 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.050

    Article  Google Scholar 

  8. M. Aziz, S. Saber Abbas, W.R. Wan, Baharom, Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater. Lett. 91, 31–34 (2013). https://doi.org/10.1016/j.matlet.2012.09.079

    Article  Google Scholar 

  9. T. Stergiopoulos, I.M. Arabatzis, H. Cachet, P. Falaras, Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex: solid-state solar cell assembling by incorporating a composite polymer electrolyte. J. Photochem. Photobiol. A 155, 163–170 (2003). https://doi.org/10.1016/s1010-6030(02)00394-5

    Article  Google Scholar 

  10. Y. Liu, W. Yang, Z. Dai, H. Chen, X. Yang, D. Hou, Improved molten salt synthesis (MSS) for SnO2 nanorods and nanotwins. Mater. Chem. Phys. 112, 381–386 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.064

    Article  Google Scholar 

  11. J. Kong, H. Deng, P. Yang, J. Chu, Synthesis and properties of pure and antimony-doped tin dioxide thin films fabricated by sol–gel technique on silicon wafer. Mater. Chem. Phys. 114, 854–859 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.049

    Article  Google Scholar 

  12. J. Zhang, L. Gao, Synthesis and characterization of nanocrystalline tin oxide by sol-gel method. J. Solid State Chem. 177, 1425–1430 (2004). https://doi.org/10.1016/j.jssc.2003.11.024

    Article  Google Scholar 

  13. C. Fu, J. Wang, M. Yang, X. Su, J. Xu, B. Jiang, Effect of la doping on microstructure of SnO2 nanopowders prepared by co-precipitation method. J. Non Cryst. Solids 357, 1172–1176 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.10.019

    Article  Google Scholar 

  14. M. Krishna, S. Komarneni, Conventional-vs microwave-hydrothermal synthesis of tin oxide, SnO2 nanoparticles. Ceram. Int. 35, 3375–3379 (2009). https://doi.org/10.1016/j.ceramint.2009.06.010

    Article  Google Scholar 

  15. N.S. Baik, G. Sakai, N. Miura, N. Yamazoe, Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment. J. Am. Ceram. Soc. 83, 2983–2987 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01670.x

    Article  Google Scholar 

  16. S. Supothina, R. Rattanakam, S. Vichaphund, P. Thavorniti, Effect of synthesis condition on morphology and yield of hydrothermally grown SnO2 nanorod clusters. J. Eur. Ceram. Soc. 31, 2453–2458 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.018

    Article  Google Scholar 

  17. H. Yang, Y. Hu, A. Tang, S. Jin, G. Qiu, Synthesis of tin oxide nanoparticles by mechanochemical reaction. J. Alloy. Compd. 363, 271–274 (2004). https://doi.org/10.1016/S0925-8388(03)00473-0

    Article  Google Scholar 

  18. J.S. Lee, S.C. Choi, Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process. J. Eur. Ceram. Soc. 25, 3307–3314 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.08.022

    Article  Google Scholar 

  19. S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B 145, 7–12 (2010). https://doi.org/10.1016/j.snb.2009.11.002

    Article  Google Scholar 

  20. N. Sharma, R. Jha, S. Baghel, D. Sharma, Study on photocatalyst zinc oxide annealed at different temperatures for photodegradation of Eosin Y dye. J. Alloy. Compd. 695, 270–279 (2017). https://doi.org/10.1016/j.jallcom.2016.10.194

    Article  Google Scholar 

  21. N.D. Hoa, N. Van Quy, H. Song, Y. Kang, Y. Cho, D. Kim, Tin oxide nanotube structures synthesized on a template of single-walled carbon nanotubes. J. Cryst. Growth 311, 657–661 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.076

    Article  Google Scholar 

  22. E.S.M.A. Duraia, Z.A. Mansurov, S.Z. Tokmoldin, V.V. Klimenov, I.S. Nevmerzhitsky, A.M. Dochshanov, Synthesis and characterization of tin oxide nanoribbons and nanowires, in: Proceedings of International Siberian Conference on Control and Communications, SIBCON-2009, pp. 211–215 (2009). https://doi.org/10.1109/SIBCON.2009.5044858

  23. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997–1000 (2003). https://doi.org/10.1002/adma.200304889

    Article  Google Scholar 

  24. P. Chetri, P. Basyach, A. Choudhury, Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: an experimental and DFT investigation. Chem. Phys. 434, 1–10 (2014). https://doi.org/10.1016/j.chemphys.2014.02.007

    Article  Google Scholar 

  25. A. Bhattacharjee, M. Ahmaruzzaman, A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase. J. Colloid Interface Sci. 448, 130–139 (2015). https://doi.org/10.1016/j.jcis.2015.01.083

    Article  Google Scholar 

  26. H.J. Wang, F.Q. Sun, Y. Zhang, L.S. Li, H.Y. Chen, Q.S. Wu et al., Photochemical growth of nanoporous SnO2 at the air–water interface and its high photocatalytic activity. J. Mater. Chem. 20, 5641–5645 (2010). https://doi.org/10.1039/b926930d

    Article  Google Scholar 

  27. K. Vijayarangamuthu, S. Rath, Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. J. Alloy. Compd. 610, 706–712 (2014). https://doi.org/10.1016/j.jallcom.2014.04.187

    Article  Google Scholar 

  28. K. Vinodgopal, P.V. Kamat, Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol. 29, 841–845 (1995). https://doi.org/10.1021/es00003a037

    Article  Google Scholar 

  29. A.K. Sinha, P.K. Manna, M. Pradhan, C. Mondal, S.M. Yusuf, T. Pal, Tin oxide with a p–n heterojunction ensures both UV and visible light photocatalytic activity. RSC Adv. 4, 208–211 (2014). https://doi.org/10.1039/C3RA42740D

    Article  Google Scholar 

  30. L.E. Brus, Optical propagation and vibrational energy loss in gaseous waveguide lasers. IEEE J. Quantum Electron. 17, 293–295 (1981). https://doi.org/10.1109/JQE.1981.1071088

    Article  Google Scholar 

  31. J. Moore, R. Louder, C. Thompson, Photocatalytic activity and stability of porous polycrystalline ZnO thin-films grown via a two-step thermal oxidation process. Coatings 4, 651–669 (2014). https://doi.org/10.3390/coatings4030651

    Article  Google Scholar 

  32. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012). https://doi.org/10.1002/adma.201102752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Jha, R. & Sharma, R. Growth of size-controllable tetragonal rutile stannic oxide nanostructures by co-precipitation route for eosin Y dye degradation under solar radiation. J Mater Sci: Mater Electron 29, 4801–4816 (2018). https://doi.org/10.1007/s10854-017-8436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8436-7

Navigation