Skip to main content
Log in

Cu:ZnS and Al:ZnS thin films prepared on FTO substrate by nebulized spray pyrolysis technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu doped ZnS and Al doped ZnS thin films were coated on the fluorine-doped tin oxide substrates by nebulized spray pyrolysis technique. The structural, morphological, optical and electrical properties of Cu and Al doped ZnS thin films were investigated. X-ray diffraction analysis revealed that all the doped ZnS films are polycrystalline nature with hexagonal structure. The size of the crystallites was also determined. Field emission scanning microscopic images of the doped ZnS thin films shows smooth and uniform plaque shaped grains on to the surface of the films. Energy dispersive analysis of X-ray confirms the presence of expected elements without any other impurities and nature of the thin film. The optical transmittance values were observed to be 71 and 74% for Cu:ZnS and Al:ZnS films, respectively. The observed high band gap value is 3.67 eV for 2% Cu:ZnS film. The room temperature photoluminescence spectra of the Cu:ZnS films showed blue emission peaks at wavelength 407 and 422 nm. The visible emission band at 478 nm is due to the recombination of electrons in the sulphur vacancy level and holes in the zinc vacancy. Low resistivity value was observed at 4% Cu:ZnS film is explained by crystalline size and carrier concentration. The enhanced electrical properties behavior of Cu and Al doped ZnS thins film proposes for effective solar cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 18, 33 (2003)

    Article  Google Scholar 

  2. M. Rusu, W. Eisele, R.Wu¨rz Ennaoui, A.M. Ch Lux-Steiner, T.P. Niesen, F. Karg, J. Phys. Chem. Solids 64, 2037 (2003)

    Article  Google Scholar 

  3. A. Antony, K.V. Mirali, R. Manoj, M.K. Jayaraj, Mater. Chem. Phys. 90, 106 (2005)

    Article  Google Scholar 

  4. E. Hichou, M. Addou, J.L. Budendor, J. Ebothe, E. Idrissi, M. Troyon, Semicond. Sci. Technol. 19, 230 (2004)

    Article  Google Scholar 

  5. B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, J.C. Bernede, Mater. Chem. Phys. 68, 175 (2001)

    Article  Google Scholar 

  6. N. Fathy, R. Kobayashi, M. Ichimura, Mater. Sci. Eng. B 107, 271 (2004)

    Article  Google Scholar 

  7. J. Vidal, O. De Melo, O. Vigil, N. Lopez, G. Contreras-Puente, O. Zelaya-Angel, Thin Solid Films 419, 118 (2002)

    Article  Google Scholar 

  8. S. Takata, T. Minami, T. Miyata, Thin Solid Films 193, 481 (1990)

    Article  Google Scholar 

  9. S.D. Sartale, B.R. Sankapal, M. Lux-Steiner, A. Ennaoui, Thin Solid Films 168, 480 (2005)

    Google Scholar 

  10. S.M.A. Durrani, A.M. Al-Shukri, A. Iob, E.E. Khawaja, Thin Solid Films 379, 199 (2000)

    Article  Google Scholar 

  11. K.H.L.X. Shaoi, H.L. Chang, Hwang, Appl. Surf. Sci. 212, 305 (2003)

    Article  Google Scholar 

  12. M.C. Lopaz, J.P. Espinos, F. Martin, D. Leinen, J.R. Ramos-Barrado, J. Cryst. Growth 285, 66 (2005)

    Article  Google Scholar 

  13. K. Deva Arun Kumar, S. Valanarasu, V. Tamilnayagam, L. Amalraj, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7278-7

    Google Scholar 

  14. M. Öztaş, M. Bedir, A.N. Yazici, E.V. Kafadar, H. Toktamış, Characterization of copper-doped sprayed ZnS thin films. Physica B 381, 40–46 (2006)

    Article  Google Scholar 

  15. N. Bitri, K.B. Bacha, L. Isabelle, H. Bouzouita, M. Abaab, J. Mater. Sci.: Mater. Electron. 28, 734 (2017)

    Google Scholar 

  16. M.A. Rahman, M.K.R. Khan, Mater. Sci. Semicond. Process. 24, 26 (2014)

    Article  Google Scholar 

  17. E. Fortunato, A. Goncalves, V. Accuncao, A. Marques, W.L. Estrada, Thin solid films 442, 121 (2003)

    Article  Google Scholar 

  18. M. Yilmaz, D. Tatar, E. Sonmez, C. Cirak, S. Aydogan, R. Gunturkun, Synth. React. Inorg. Met.-Org. Chem. 46, 489 (2015)

    Article  Google Scholar 

  19. C.Y. Tsay, K.S. Fan, C.M. Lei, J. Alloys Compd. 512, 216 (2012)

    Article  Google Scholar 

  20. P. Nunes, E. Fortunato, P. Tonello, F.B. Fernandes, P. Vilarino, R. Martins, Vacuum 64, 281 (2002)

    Article  Google Scholar 

  21. R. Mariappan, M. Ragavendar, V. Ponnuswamy, J. Alloys Compd. 509, 7337 (2011)

    Article  Google Scholar 

  22. R.R. Kasar, N.G. Despande, Y.G. Gudage, J.C. Vyas, R. Sharma, Physica B 403, 3724 (2008)

    Article  Google Scholar 

  23. L. Amalraj, C. Sanjeeviraja, M. Jayachandran, J. Cryst. Growth 234, 683 (2002)

    Article  Google Scholar 

  24. C. Barret, T.B. Massalski, Structure of Metals (Pergamon, Oxford, 1980), p. 923

    Google Scholar 

  25. K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, Appl. Phys. A 123, 801 (2017). https://doi.org/10.1007/s00339-017-1426-z

    Article  Google Scholar 

  26. B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, J.C. Bernede, Mater. Chem. Phys. 68, 175 (2000)

    Article  Google Scholar 

  27. D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, Physica B Condens. Matter. 523, 31–38 (2017)

    Article  Google Scholar 

  28. A. Goktas, F. Aslan, I.H. Mutlu, J. Mater. Sci.: Mater. Electron. 23, 605 (2012)

    Google Scholar 

  29. S. Tec-Yam, J. Rojas, V. Rejón, A.I. Oliva, Mater. Chem. Phys. 136(2–3), 386 (2012)

    Article  Google Scholar 

  30. K. Nagamani, P. Prathap, Y. Lingappa, R.W. Miles, K.T.R. Reddy, Phys. Procedia 25, 137–142 (2012)

    Article  Google Scholar 

  31. G. Murugados, J. Lumin. 130, 11 (2010)

    Google Scholar 

  32. R.M. Ibrahim, M. Markom, H. Abdullah, ECS J. Solid State Sci. Technol. 4(2), R31–R37 (2015)

    Article  Google Scholar 

  33. T.Y. Yesu, R. Anitha, B. Kavitha, Int. J. Appl. Sci. Eng. Res. 1, 282 (2012)

    Google Scholar 

  34. K. Ravindranadh, K.D.V. Prasad, M.C. Rao, Spectroscopic and luminescent properties of Co2+ doped tin oxide thin films by spray pyrolysis. AIMS Mater. Sci. 3(3), 796–807 (2016)

    Article  Google Scholar 

  35. H. Farid, M.A. Rafea, E.F. El-Wahidy, O. El-Shazly, J. Mater. Sci.: Mater. Electron. 25, 2023 (2014)

    Google Scholar 

  36. S.H. Mohamed, J. Phys. D. Appl. Phys. 43(035), 406 (2010)

    Google Scholar 

  37. J. Tauc, R. Grigorovich, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  38. A. Goktas, F. Aslan, A. Tumbul, J. Sol-Gel Sci. Technol. 75, 45 (2015)

    Article  Google Scholar 

  39. W. Dong, C. Zhu, Opt. Mater. 22, 227 (2003)

    Article  Google Scholar 

  40. C.S.S.R. Kumar, Semiconductor Nanomaterials (Wiley, Newyork, 2010)

    Google Scholar 

  41. T H Gfroerer, RA Mayers eds., Encyclopedia of Analytical Chemistry (Wiley, Chichester, 2000), p. 9216

    Google Scholar 

  42. K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, J. Mater. Chem. Phys. 82, 718 (2003)

    Article  Google Scholar 

  43. G.H. Blount, A.C. Sanderson, R.H. Bube, J. Appl. Phys. 38, 4409 (1967)

    Article  Google Scholar 

  44. A.E. Thomas, G.J. Russell, J. Woods, J. Phys. C 17, 6219 (1984)

    Article  Google Scholar 

  45. A.A. Khosravi, M. Kundu, L. Jatwa, S.K. Deshpande, U.A. Bhagwat, M. Sastry, S.K. Kulkarni, Appl. Phys. Lett. 67, 2702 (1995)

    Article  Google Scholar 

  46. K. Jayanthi, S. Chawla, H. Chander, D. Haranath, Cryst. Res. Technol. 42(10), 976–982 (2007)

    Article  Google Scholar 

  47. A.U. Ubale, D.K. Kulkarni, Bull. Mater. Sci. 28(1), 43 (2005)

    Article  Google Scholar 

  48. K.D.A. Kumar, V. Ganesh, M. Shkir, S. AlFaify, S. Valanarasu, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7985-0

    Google Scholar 

  49. Y. Shigesato, S. Takaki, T. Haranoh, Appl. Surf. Technol. 269, 48 (1991)

    Google Scholar 

  50. H.L. Shen, H. Zhang, L.F. Lu, F. Jiang, C. Yang, Progress in natural science. Mater. Int. 20, 44–48 (2010)

    Google Scholar 

  51. N. Bitri, K.B. Bacha, I. Ly, H. Bouzouita, M. Abaab, Studies of physical properties of the Al doped ZnS thin films prepared by spray. J. Mater. Sci.: Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5584-0

    Google Scholar 

  52. E.I. Anila, T.A. Safeera, R. Reshmi, Photoluminescence of nanocrystalline ZnS thin film grown by sol-gel method. J. Fluoresc. (2015). https://doi.org/10.1007/s10895-015-1515-3

    Google Scholar 

  53. F. Ozutok, K. Erturk, V. Bilgin, Growth, electrical and optical study of ZnS:Mn thin films. Acta Phys. Pol. A 121, 221–223 (2012)

    Article  Google Scholar 

  54. A. Goktas, F. Aslan, A. Tumbul, Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties. J. Sol-Gel. Sci. Technol. (2015). https://doi.org/10.1007/s10971-015-3674-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hubert Joe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabitha, C., Kumar, K.D.A., Valanarasu, S. et al. Cu:ZnS and Al:ZnS thin films prepared on FTO substrate by nebulized spray pyrolysis technique. J Mater Sci: Mater Electron 29, 4612–4623 (2018). https://doi.org/10.1007/s10854-017-8412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8412-2

Navigation