Skip to main content
Log in

Enhanced photo-electrochemical potential of Fe2O3 modified TiO2 nanotube array with multiple legs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, TiO2 nanotube array with multiple legs (TNML) were fabricated through electrochemical anodization route. To increase the photo-electrochemical efficiency under visible light, TNML in anatase phase were modified suitably with a pH controlled thin layer of Fe2O3 using electrode deposition method followed by anodization in an inert electrolyte. The resulting Fe2O3/TiO2 hybrid nano structure shows a 46% increase in photocurrent density than bare TNML under 1 sun illumination. The enhancement in photocurrent density was attributed to generation of electron hole pair under low energetic (higher wavelength) visible light as well due to the effective narrowed band gap in Fe2O3/TNML hybrid electrode. Moreover, the re-configured band position of individual semiconductors in the resulting hybrid electrode largely reduces the recombination rate and correspondingly increases the photocurrent density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O.K. Varghese, M. Paulose, C.A. Grimes, Nat Nanotechnol. 4, 592 (2009)

    Article  Google Scholar 

  2. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  Google Scholar 

  3. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)

    Article  Google Scholar 

  4. L. Pan, X. Zhang, L. Wang, J.J. Zou, Mater. Lett. 160, 576 (2015)

    Article  Google Scholar 

  5. M. Fitra, I. Daut, M. Irwanto, N. Gomesh, Y.M. Irwan, Energy Proc. 36, 278 (2013)

    Article  Google Scholar 

  6. S. Hejazi, N.T. Nguyen, A. Mazare, P. Schmuki, Catal. Today 281, 189 (2017)

    Article  Google Scholar 

  7. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)

    Article  Google Scholar 

  8. T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Bull. Mater. Sci. 29, 7 (2006)

    Article  Google Scholar 

  9. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, H. Xu, J. Am. Chem. Soc. 125, 12384 (2003)

    Article  Google Scholar 

  10. J.H. Jung, H. Kobayashi, K.J. Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14, 1445 (2002)

    Article  Google Scholar 

  11. S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, S. Yoriya, T.J. Tempa, C.A. Grimes, Phys. Chem. Chem. Phys. 12, 2780 (2010)

    Article  Google Scholar 

  12. M.A. Boda, M.A. Shah, Mater. Res. Exp. 4, 075908 (2017)

    Article  Google Scholar 

  13. Y. Rambabu, M. Jaiswal, S.C. Roy, AIP Adv. 6, 115010 (2016)

    Article  Google Scholar 

  14. Y. Rambabu, M. Jaiswal, S.C. Roy, J. Phys. D 48, 295302 (2015)

    Article  Google Scholar 

  15. N. Sobti, A. Bensouici, F. Coloma, C. Untiedt, S. Achour, J. Nanopart. Res. 16, 2577 (2014)

    Article  Google Scholar 

  16. R. Dang, X. Ma, J. Mater. Sci.: Mater. Electron. 28, 8818 (2017)

    Google Scholar 

  17. M.A. Boda, M.A. Shah, J. Electron. Mater. 46, 1 (2017)

    Article  Google Scholar 

  18. W. Teng, Y. Wang, H. Huang, X. Li, Y. Tang, Appl. Surf. Sci. 425, 507 (2017)

    Article  Google Scholar 

  19. Y. Jia, P. Xiao, H. He, J. Yao, F. Liu, Z. Wang, Y. Li, Appl. Surf. Sci. 258, 6627 (2012)

    Article  Google Scholar 

  20. B. Gilbert, C. Frandsen, E.R. Maxey, D.M. Sherman, Phys. Rev. B 79, 035108 (2009)

    Article  Google Scholar 

  21. D. Flak, A. Braun, A. Vollmer, M. Rekas, Sens. Actuators B 187, 347 (2013)

    Article  Google Scholar 

  22. M. Skocaj, M. Filipic, J. Petkovic, S. Novak, Radiol. Oncol. 45, 4 (2011)

    Article  Google Scholar 

  23. Y. Rambabu, M. Jaiswal, S.C. Roy, Catal. Today 278, 255 (2016)

    Article  Google Scholar 

  24. T. Ohsaka, S. Yamaoka, O. Shimomura, Solid State Commun. 30, 345 (1979)

    Article  Google Scholar 

  25. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978)

    Article  Google Scholar 

  26. D.L. Faria, V. Silva, M.T. Oliveira, J. Raman Spectrosc. 28, 873 (1997)

    Article  Google Scholar 

  27. A. Atkinson, S.C. Jain, J. Raman Spectrosc. 30, 885 (1999)

    Article  Google Scholar 

  28. L.A. Falkovsky, J.M. Bluet, J. Camassel, Phys. Rev. B 22, 14697 (1997)

    Article  Google Scholar 

  29. L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Solid Energy Mater. Sol. Cells 93, 1875 (2009)

    Article  Google Scholar 

  30. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, J. Hazard. Mater. 252, 233 (2013)

    Article  Google Scholar 

  31. I.S. Cho, C. Zhebo, A.J. Forman, R.K. Dong, M. Pratap, F. Thomas, T.F. Jaramillo, X. Zheng, Nano Lett. 11, 4978 (2011)

    Article  Google Scholar 

  32. L. Wu, H. Yan, J. Xiao, X. Li, X. Wang, T. Zhao, Ceram. Int. 43, 14334 (2017) (2017)

    Article  Google Scholar 

  33. L. Peng, T. Xie, Y. Lu, H. Fan, D. Wang, Phys. Chem. Chem. Phys. 12, 8033 (2010)

    Article  Google Scholar 

  34. D. Beydoun, R. Amal, G.K. Low, S. Mcevoy, J. Phys. Chem. B 104, 4387 (2000)

    Article  Google Scholar 

  35. S. Kuang, L. Yang, S. Luo, Q. Cai, Appl. Surf. Sci. 255, 7385 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Somnath Chanda Roy and Prof. M. S. Ramachandra Rao for allowing us to carry out the experimental work in their labs ENL and MSRC at IIT Madras, respectively. We are also thankful to Mohd Azhardin Ganayee research scholar at IIT Madras (Prof. T. Pradeep’s lab, Chemistry Department) for his valuable guidance and encouragement. Finally, the authors would like to extend their gratitude to NIT Srinagar, MHRD and DST for their support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffar Ahmad Boda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boda, M.A., Shah, M.A. Enhanced photo-electrochemical potential of Fe2O3 modified TiO2 nanotube array with multiple legs. J Mater Sci: Mater Electron 29, 4596–4601 (2018). https://doi.org/10.1007/s10854-017-8410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8410-4

Navigation